IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v196y2009i2p594-599.html
   My bibliography  Save this article

Risk-averse order policies with random prices in complete market and retailers' private information

Author

Listed:
  • Tapiero, Charles S.
  • Kogan, Konstantin

Abstract

We consider a retailer who orders products before the price for them becomes known. The price is an outcome of perfect competition in a complete market. Since the demand is price sensitive, the uncertainty in prices induces uncertain profits and associated risks. In this paper we show that if the retailer is risk averse and, as a result, selects a utility function of profit to maximize, then his subjective assessment of future prices is affected by the risk attitude. This, in turn, introduces a bias in retailer's ordering policies. By considering coordinated pricing and ordering policies we derive a relationship between risk aversion, retailer's subjective (private) assessment and the market implied, risk neutral forecast. This relationship and the induced bias are then illustrated for two typical operations management strategies which involve either inventory considerations or promotions avoiding accumulation of stocks.

Suggested Citation

  • Tapiero, Charles S. & Kogan, Konstantin, 2009. "Risk-averse order policies with random prices in complete market and retailers' private information," European Journal of Operational Research, Elsevier, vol. 196(2), pages 594-599, July.
  • Handle: RePEc:eee:ejores:v:196:y:2009:i:2:p:594-599
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00315-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jackwerth, Jens Carsten, 2000. "Recovering Risk Aversion from Option Prices and Realized Returns," Review of Financial Studies, Society for Financial Studies, vol. 13(2), pages 433-451.
    2. Yumi Oum & Shmuel Oren & Shijie Deng, 2006. "Hedging quantity risks with standard power options in a competitive wholesale electricity market," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(7), pages 697-712, October.
    3. Christophe Pérignon & Christophe Villa, 2002. "Extracting Information from Options Markets: Smiles, State–Price Densities and Risk Aversion," European Financial Management, European Financial Management Association, vol. 8(4), pages 495-513, December.
    4. Jackwerth, Jens Carsten, 1999. "Option Implied Risk-Neutral Distributions and Implied Binomial Trees: A Literature Review," MPRA Paper 11634, University Library of Munich, Germany.
    5. Yacine Aït-Sahalia & Andrew W. Lo, 1998. "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," Journal of Finance, American Finance Association, vol. 53(2), pages 499-547, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Benyong & Meng, Chao & Xu, Dong & Son, Young-Jun, 2016. "Three-echelon supply chain coordination with a loss-averse retailer and revenue sharing contracts," International Journal of Production Economics, Elsevier, vol. 179(C), pages 192-202.
    2. Mou, Shandong & Robb, David J. & DeHoratius, Nicole, 2018. "Retail store operations: Literature review and research directions," European Journal of Operational Research, Elsevier, vol. 265(2), pages 399-422.
    3. Sen Lin & Bo Li & Antonio Arreola-Risa & Yiwei Huang, 2023. "Optimizing a single-product production-inventory system under constant absolute risk aversion," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 510-537, October.
    4. Chun-Hung Chiu & Tsan-Ming Choi, 2016. "Supply chain risk analysis with mean-variance models: a technical review," Annals of Operations Research, Springer, vol. 240(2), pages 489-507, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle: survey and outlook," Annals of Finance, Springer, vol. 14(3), pages 289-329, August.
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Daniel Giamouridis, 2005. "Inferring option-implied investors' risk preferences," Applied Financial Economics, Taylor & Francis Journals, vol. 15(7), pages 479-488.
    4. Luiz Vitiello & Ser-Huang Poon, 2014. "Non-monotonic pricing kernel and an extended class of mixture of distributions for option pricing," Review of Derivatives Research, Springer, vol. 17(2), pages 241-259, July.
    5. Tapiero, Charles S., 2008. "Orders and inventory commodities with price and demand uncertainty in complete markets," International Journal of Production Economics, Elsevier, vol. 115(1), pages 12-18, September.
    6. Maria Grith & Wolfgang Karl Härdle & Melanie Schienle, 2010. "Nonparametric Estimation of Risk-Neutral Densities," SFB 649 Discussion Papers SFB649DP2010-021, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    7. Wilkens, Sascha & Roder, Klaus, 2006. "The informational content of option-implied distributions: Evidence from the Eurex index and interest rate futures options market," Global Finance Journal, Elsevier, vol. 17(1), pages 50-74, September.
    8. José Renato Haas Ornelas & José Santiago Fajardo Barbachan & Aquiles Rocha de Farias, 2012. "Estimating Relative Risk Aversion, Risk-Neutral and Real-World Densities using Brazilian Real Currency Options," Working Papers Series 269, Central Bank of Brazil, Research Department.
    9. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    10. Wan-Ni Lai, 2014. "Comparison of methods to estimate option implied risk-neutral densities," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1839-1855, October.
    11. José Renato Haas Ornelas, 2014. "Assessing the Forecast Ability of Risk-Neutral Densities and Real-World Densities from Emerging Markets Currencies," Working Papers Series 370, Central Bank of Brazil, Research Department.
    12. Kang, Byung Jin & Kim, Tong Suk, 2006. "Option-implied risk preferences: An extension to wider classes of utility functions," Journal of Financial Markets, Elsevier, vol. 9(2), pages 180-198, May.
    13. Liu, Xiaoquan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2007. "Closed-form transformations from risk-neutral to real-world distributions," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1501-1520, May.
    14. Barone-Adesi, Giovanni & Fusari, Nicola & Mira, Antonietta & Sala, Carlo, 2020. "Option market trading activity and the estimation of the pricing kernel: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 216(2), pages 430-449.
    15. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    16. Monteiro, Ana Margarida & Tutuncu, Reha H. & Vicente, Luis N., 2008. "Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity," European Journal of Operational Research, Elsevier, vol. 187(2), pages 525-542, June.
    17. Chalamandaris, Georgios & Rompolis, Leonidas S., 2012. "Exploring the role of the realized return distribution in the formation of the implied volatility smile," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 1028-1044.
    18. Wael Bahsoun & Pawel Góra & Silvia Mayoral & Manuel Morales, 2006. "Random Dynamics and Finance: Constructing Implied Binomial Trees from a Predetermined Stationary Den," Faculty Working Papers 13/06, School of Economics and Business Administration, University of Navarra.
    19. Polkovnichenko, Valery & Zhao, Feng, 2013. "Probability weighting functions implied in options prices," Journal of Financial Economics, Elsevier, vol. 107(3), pages 580-609.
    20. Shi-jie Jiang & Mujun Lei & Cheng-Huang Chung, 2018. "An Improvement of Gain-Loss Price Bounds on Options Based on Binomial Tree and Market-Implied Risk-Neutral Distribution," Sustainability, MDPI, vol. 10(6), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:196:y:2009:i:2:p:594-599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.