IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

On fuzzy random multiobjective quadratic programming

Listed author(s):
  • Ammar, E.E.
Registered author(s):

    In this paper, a multiobjective quadratic programming problem having fuzzy random coefficients matrix in the objective and constraints and the decision vector are fuzzy pseudorandom variables is considered. First, we show that the efficient solutions of fuzzy quadratic multiobjective programming problems are resolved into series-optimal-solutions of relative scalar fuzzy quadratic programming. Some theorems are proved to find an optimal solution of the relative scalar quadratic multiobjective programming with fuzzy coefficients, having decision vectors as fuzzy variables. At the end, numerical examples are illustrated in the support of the obtained results.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal European Journal of Operational Research.

    Volume (Year): 193 (2009)
    Issue (Month): 2 (March)
    Pages: 329-341

    in new window

    Handle: RePEc:eee:ejores:v:193:y:2009:i:2:p:329-341
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Sengupta, Atanu & Pal, Tapan Kumar, 2000. "On comparing interval numbers," European Journal of Operational Research, Elsevier, vol. 127(1), pages 28-43, November.
    3. R. Cambini & L. Carosi, 2004. "On Generalized Linearity of Quadratic Fractional Functions," Journal of Global Optimization, Springer, vol. 30(2), pages 235-251, November.
    4. Alidaee, Bahram & Glover, Fred & Kochenberger, Gary & Wang, Haibo, 2007. "Solving the maximum edge weight clique problem via unconstrained quadratic programming," European Journal of Operational Research, Elsevier, vol. 181(2), pages 592-597, September.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:193:y:2009:i:2:p:329-341. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.