IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v5y2018icp137-147.html
   My bibliography  Save this article

A discrete modification of the Benjamini–Yekutieli procedure

Author

Listed:
  • Döhler, Sebastian

Abstract

The Benjamini–Yekutieli procedure is a multiple testing method that controls the false discovery rate under arbitrary dependence of the p-values. A modification of this and related procedures is proposed for the case when the test statistics are discrete. It is shown that taking discreteness into account can improve upon known procedures. The performance of this new procedure is evaluated for pharmacovigilance data and in a simulation study.

Suggested Citation

  • Döhler, Sebastian, 2018. "A discrete modification of the Benjamini–Yekutieli procedure," Econometrics and Statistics, Elsevier, vol. 5(C), pages 137-147.
  • Handle: RePEc:eee:ecosta:v:5:y:2018:i:c:p:137-147
    DOI: 10.1016/j.ecosta.2016.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306216300351
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2016.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoav Benjamini & Abba M. Krieger & Daniel Yekutieli, 2006. "Adaptive linear step-up procedures that control the false discovery rate," Biometrika, Biometrika Trust, vol. 93(3), pages 491-507, September.
    2. Peter B. Gilbert, 2005. "A modified false discovery rate multiple‐comparisons procedure for discrete data, applied to human immunodeficiency virus genetics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 143-158, January.
    3. John D. Storey & Jonathan E. Taylor & David Siegmund, 2004. "Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 187-205, February.
    4. Peter H. Westfall & James F. Troendle & Gene Pennello, 2010. "Multiple McNemar Tests," Biometrics, The International Biometric Society, vol. 66(4), pages 1185-1191, December.
    5. Yoav Benjamini & Yosef Hochberg, 2000. "On the Adaptive Control of the False Discovery Rate in Multiple Testing With Independent Statistics," Journal of Educational and Behavioral Statistics, , vol. 25(1), pages 60-83, March.
    6. Campbell R. Harvey & Yan Liu & Heqing Zhu, 2016. "Editor's Choice … and the Cross-Section of Expected Returns," The Review of Financial Studies, Society for Financial Studies, vol. 29(1), pages 5-68.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo Wenge & Peddada Shyamal, 2008. "Adaptive Choice of the Number of Bootstrap Samples in Large Scale Multiple Testing," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-21, March.
    2. Christina C. Bartenschlager & Jens O. Brunner, 2019. "Reaching for the stars: attention to multiple testing problems and method recommendations using simulation for business research," Journal of Business Economics, Springer, vol. 89(4), pages 447-479, June.
    3. Yoav Benjamini, 2010. "Discovering the false discovery rate," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 405-416, September.
    4. Gharad Bryan & James J Choi & Dean Karlan, 2021. "Randomizing Religion: the Impact of Protestant Evangelism on Economic Outcomes," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 136(1), pages 293-380.
    5. Shigeyuki Matsui & Hisashi Noma, 2011. "Estimating Effect Sizes of Differentially Expressed Genes for Power and Sample-Size Assessments in Microarray Experiments," Biometrics, The International Biometric Society, vol. 67(4), pages 1225-1235, December.
    6. Hanck, Christoph, 2011. "Now, whose schools are really better (or weaker) than Germany's? A multiple testing approach," Economic Modelling, Elsevier, vol. 28(4), pages 1739-1746, July.
    7. Alessio Farcomeni, 2009. "Generalized Augmentation to Control the False Discovery Exceedance in Multiple Testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 501-517, September.
    8. Ghosh Debashis, 2012. "Incorporating the Empirical Null Hypothesis into the Benjamini-Hochberg Procedure," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-21, July.
    9. Tim Bancroft & Chuanlong Du & Dan Nettleton, 2013. "Estimation of False Discovery Rate Using Sequential Permutation p-Values," Biometrics, The International Biometric Society, vol. 69(1), pages 1-7, March.
    10. Joseph P. Romano & Azeem M. Shaikh & Michael Wolf, 2010. "Hypothesis Testing in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 75-104, September.
    11. Kim, Donggyu & Zhang, Chunming, 2014. "Adaptive linear step-up multiple testing procedure with the bias-reduced estimator," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 31-39.
    12. Deckers, Thomas & Hanck, Christoph, 2009. "Multiple Testing Techniques in Growth Econometrics," MPRA Paper 17843, University Library of Munich, Germany.
    13. Andrew Y. Chen, 2022. "Do t-Statistic Hurdles Need to be Raised?," Papers 2204.10275, arXiv.org, revised Apr 2024.
    14. Zhao, Haibing & Fung, Wing Kam, 2016. "A powerful FDR control procedure for multiple hypotheses," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 60-70.
    15. Nik Tuzov & Frederi Viens, 2011. "Mutual fund performance: false discoveries, bias, and power," Annals of Finance, Springer, vol. 7(2), pages 137-169, May.
    16. Sankaran, Kris & Holmes, Susan, 2014. "structSSI: Simultaneous and Selective Inference for Grouped or Hierarchically Structured Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 59(i13).
    17. Cai, Qingyun, 2018. "A scoring criterion for rejection of clustered p-values," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 180-189.
    18. Haibing Zhao & Wing Kam Fung, 2018. "Controlling mixed directional false discovery rate in multidimensional decisions with applications to microarray studies," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 316-337, June.
    19. Rohit Kumar Patra & Bodhisattva Sen, 2016. "Estimation of a two-component mixture model with applications to multiple testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 869-893, September.
    20. Haibing Zhao & Xinping Cui, 2020. "Constructing confidence intervals for selected parameters," Biometrics, The International Biometric Society, vol. 76(4), pages 1098-1108, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:5:y:2018:i:c:p:137-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.