IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v34y2025icp78-90.html
   My bibliography  Save this article

Robust Estimation of Probit Models with Endogeneity

Author

Listed:
  • Naghi, Andrea A.
  • Váradi, Máté
  • Zhelonkin, Mikhail

Abstract

Probit models with endogenous regressors are commonly used models in economics and other social sciences. Yet, the robustness properties of parametric estimators in these models have not been formally studied. The influence functions of the endogenous probit model’s classical estimators (the maximum likelihood and the two-step estimator) are derived and their non-robustness to small but harmful deviations from distributional assumptions is proven. A procedure to obtain a robust alternative estimator is proposed, its asymptotic normality is proven and its asymptotic variance is provided. A simple robust test for endogeneity is also constructed. The performance of the robust and classical estimators is compared in Monte Carlo simulations with different types of contamination scenarios. The use of the robust estimator is illustrated in several empirical applications.

Suggested Citation

  • Naghi, Andrea A. & Váradi, Máté & Zhelonkin, Mikhail, 2025. "Robust Estimation of Probit Models with Endogeneity," Econometrics and Statistics, Elsevier, vol. 34(C), pages 78-90.
  • Handle: RePEc:eee:ecosta:v:34:y:2025:i:c:p:78-90
    DOI: 10.1016/j.ecosta.2022.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306222000454
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2022.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ronchetti, Elvezio, 2020. "Accurate and robust inference," Econometrics and Statistics, Elsevier, vol. 14(C), pages 74-88.
    2. Ronchetti, Elvezio & Trojani, Fabio, 2001. "Robust inference with GMM estimators," Journal of Econometrics, Elsevier, vol. 101(1), pages 37-69, March.
    3. Pia M. Orrenius & Madeline Zavodny, 2015. "Does Immigration Affect Whether US Natives Major in Science and Engineering?," Journal of Labor Economics, University of Chicago Press, vol. 33(S1), pages 79-108.
    4. Richard W. Blundell & James L. Powell, 2004. "Endogeneity in Semiparametric Binary Response Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(3), pages 655-679.
    5. Stéphane Bonhomme & Martin Weidner, 2018. "Minimizing sensitivity to model misspecification," CeMMAP working papers CWP59/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Gerber, Alan S. & Green, Donald P., 2000. "The Effects of Canvassing, Telephone Calls, and Direct Mail on Voter Turnout: A Field Experiment," American Political Science Review, Cambridge University Press, vol. 94(3), pages 653-663, September.
    7. Duncan, Gregory M., 1987. "A simplified approach to M-estimation with application to two-stage estimators," Journal of Econometrics, Elsevier, vol. 34(3), pages 373-389, March.
    8. Giorgio Brunello & Daniele Fabbri & Margherita Fort, 2013. "The Causal Effect of Education on Body Mass: Evidence from Europe," Journal of Labor Economics, University of Chicago Press, vol. 31(1), pages 195-223.
    9. Horrace, William C. & Oaxaca, Ronald L., 2006. "Results on the bias and inconsistency of ordinary least squares for the linear probability model," Economics Letters, Elsevier, vol. 90(3), pages 321-327, March.
    10. Isaiah Andrews & Matthew Gentzkow & Jesse M. Shapiro, 2020. "On the Informativeness of Descriptive Statistics for Structural Estimates," Econometrica, Econometric Society, vol. 88(6), pages 2231-2258, November.
    11. Zhelonkin, Mikhail & Genton, Marc G. & Ronchetti, Elvezio, 2012. "On the robustness of two-stage estimators," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 726-732.
    12. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    13. Mikhail Zhelonkin & Marc G. Genton & Elvezio Ronchetti, 2016. "Robust inference in sample selection models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 805-827, September.
    14. Isaiah Andrews & Matthew Gentzkow & Jesse M. Shapiro, 2020. "Reply to: Comments on “On the Informativeness of Descriptive Statistics for Structural Estimates”," Econometrica, Econometric Society, vol. 88(6), pages 2277-2279, November.
    15. Rothe, Christoph, 2009. "Semiparametric estimation of binary response models with endogenous regressors," Journal of Econometrics, Elsevier, vol. 153(1), pages 51-64, November.
    16. Isaiah Andrews & Matthew Gentzkow & Jesse M. Shapiro, 2017. "Measuring the Sensitivity of Parameter Estimates to Estimation Moments," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(4), pages 1553-1592.
    17. Meer, Jonathan & Rosen, Harvey S., 2004. "Insurance and the utilization of medical services," Social Science & Medicine, Elsevier, vol. 58(9), pages 1623-1632, May.
    18. Rivers, Douglas & Vuong, Quang H., 1988. "Limited information estimators and exogeneity tests for simultaneous probit models," Journal of Econometrics, Elsevier, vol. 39(3), pages 347-366, November.
    19. Gabriela V. Cohen Freue & Hernan Ortiz-Molina & Ruben H. Zamar, 2013. "A Natural Robustification of the Ordinary Instrumental Variables Estimator," Biometrics, The International Biometric Society, vol. 69(3), pages 641-650, September.
    20. Isaiah Andrews & James H. Stock & Liyang Sun, 2019. "Weak Instruments in Instrumental Variables Regression: Theory and Practice," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 727-753, August.
    21. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    22. Cantoni, Eva & de Luna, Xavier, 2020. "Semiparametric inference with missing data: Robustness to outliers and model misspecification," Econometrics and Statistics, Elsevier, vol. 16(C), pages 108-120.
    23. Marco Avella-Medina, 2021. "Privacy-Preserving Parametric Inference: A Case for Robust Statistics," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 969-983, April.
    24. Mark Grinblatt & Matti Keloharju & Juhani Linnainmaa, 2011. "IQ and Stock Market Participation," Journal of Finance, American Finance Association, vol. 66(6), pages 2121-2164, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea A. Naghi & Máté Váradi & Mikhail Zhelonkin, 2021. "Robust Estimation of Probit Models with Endogeneity," Tinbergen Institute Discussion Papers 21-004/III, Tinbergen Institute.
    2. Jens Klooster & Mikhail Zhelonkin, 2024. "Outlier robust inference in the instrumental variable model with applications to causal effects," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 86-106, January.
    3. Timothy B. Armstrong & Michal Kolesár, 2021. "Sensitivity analysis using approximate moment condition models," Quantitative Economics, Econometric Society, vol. 12(1), pages 77-108, January.
    4. Maximilian Blesch & Philipp Eisenhauer, 2021. "Robust decision-making under risk and ambiguity," Papers 2104.12573, arXiv.org, revised Oct 2021.
    5. Stéphane Bonhomme & Martin Weidner, 2022. "Minimizing sensitivity to model misspecification," Quantitative Economics, Econometric Society, vol. 13(3), pages 907-954, July.
    6. Manuel Denzer, 2019. "Estimating Causal Effects in Binary Response Models with Binary Endogenous Explanatory Variables - A Comparison of Possible Estimators," Working Papers 1916, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    7. Shi, Ruoyao, 2024. "An Averaging Estimator For Two-Step M-Estimation In Semiparametric Models," Econometric Theory, Cambridge University Press, vol. 40(3), pages 652-687, June.
    8. Chernozhukov, Victor & Fernández-Val, Iván & Kowalski, Amanda E., 2015. "Quantile regression with censoring and endogeneity," Journal of Econometrics, Elsevier, vol. 186(1), pages 201-221.
    9. Elia Lapenta, 2022. "A Bootstrap Specification Test for Semiparametric Models with Generated Regressors," Papers 2212.11112, arXiv.org, revised Oct 2023.
    10. Ilhom Abdulloev, 2018. "Job dissatisfaction and migration: evidence from Tajikistan," IZA Journal of Migration and Development, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 8(1), pages 1-27, December.
    11. Maximilian Blesch & Philipp Eisenhauer, 2023. "Robust Decision-Making under Risk and Ambiguity," Rationality and Competition Discussion Paper Series 463, CRC TRR 190 Rationality and Competition.
    12. Stéphane Bonhomme & Martin Weidner, 2019. "Posterior average effects," CeMMAP working papers CWP43/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Kajal Lahiri & Liu Yang, 2021. "Estimating Endogenous Ordered Response Panel Data Models with an Application to Income Gradient in Child Health," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 207-243, November.
    14. Dakyung Seong, 2025. "Binary Response Model With Many Weak Instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(2), pages 214-230, March.
    15. Nathan Canen & Kyungchul Song, 2021. "Counterfactual analysis under partial identification using locally robust refinement," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(4), pages 416-436, June.
    16. Nigmonov, Asror & Shams, Syed & Urbonas, Povilas, 2024. "Estimating probability of default via delinquencies? Evidence from European P2P lending market," Global Finance Journal, Elsevier, vol. 63(C).
    17. Richard Bluhm & Martin Gassebner & Sarah Langlotz & Paul Schaudt, 2021. "Fueling conflict? (De)escalation and bilateral aid," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(2), pages 244-261, March.
    18. Yingying Dong & Arthur Lewbel, 2015. "A Simple Estimator for Binary Choice Models with Endogenous Regressors," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 82-105, February.
    19. Joseph P. Janzen & Nicholas D. Paulson & Juo‐Han Tsay, 2024. "Commodity storage and the cost of capital: Evidence from Illinois grain farms," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(2), pages 526-546, March.
    20. Joseph G. Altonji & Hidehiko Ichimura & Taisuke Otsu, 2012. "Estimating Derivatives in Nonseparable Models With Limited Dependent Variables," Econometrica, Econometric Society, vol. 80(4), pages 1701-1719, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:34:y:2025:i:c:p:78-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.