IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v249y2025ipas0304407624001532.html
   My bibliography  Save this article

On superlevel sets of conditional densities and multivariate quantile regression

Author

Listed:
  • Camehl, Annika
  • Fok, Dennis
  • Gruber, Kathrin

Abstract

Some common proposals of multivariate quantiles do not sufficiently control the probability content, while others do not always accurately reflect the concentration of probability mass. We suggest superlevel sets of conditional multivariate densities as an alternative to current multivariate quantile definitions. Hence, the superlevel set is a function of conditioning variables much like in quantile regression. We show that conditional superlevel sets have favorable mathematical and intuitive features, and support a clear probabilistic interpretation. We derive the superlevel sets for a conditional or marginal density of interest from an (overfitted) multivariate Gaussian mixture model. This approach guarantees logically consistent (i.e., non-crossing) conditional superlevel sets and also allows us to obtain more traditional univariate quantiles. We demonstrate recovery of the true conditional univariate quantiles for distributions with correlation, heteroskedasticity, or asymmetry and apply our method in univariate and multivariate settings to a study on household expenditures.

Suggested Citation

  • Camehl, Annika & Fok, Dennis & Gruber, Kathrin, 2025. "On superlevel sets of conditional densities and multivariate quantile regression," Journal of Econometrics, Elsevier, vol. 249(PA).
  • Handle: RePEc:eee:econom:v:249:y:2025:i:pa:s0304407624001532
    DOI: 10.1016/j.jeconom.2024.105807
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407624001532
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2024.105807?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Roger Koenker, 2017. "Quantile Regression: 40 Years On," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 155-176, September.
    2. Bhattacharya, Indrabati & Ghosal, Subhashis, 2021. "Bayesian multivariate quantile regression using Dependent Dirichlet Process prior," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    3. repec:spo:wpmain:info:hdl:2441/4c5431jp6o888pdrcs0fuirl40 is not listed on IDEAS
    4. Sylvia. Richardson & Peter J. Green, 1997. "On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 731-792.
    5. Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers CWP36/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. José Bernardo, 2005. "Intrinsic credible regions: An objective Bayesian approach to interval estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(2), pages 317-384, December.
    7. Guillaume Carlier & Victor Chernozhukov & Alfred Galichon, 2015. "Vector quantile regression: an optimal transport approach," CeMMAP working papers 58/15, Institute for Fiscal Studies.
    8. Polonik, Wolfgang, 1997. "Minimum volume sets and generalized quantile processes," Stochastic Processes and their Applications, Elsevier, vol. 69(1), pages 1-24, July.
    9. Hallin, Marc & Šiman, Miroslav, 2016. "Elliptical multiple-output quantile regression and convex optimization," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 232-237.
    10. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    11. Wei, Ying, 2008. "An Approach to Multivariate Covariate-Dependent Quantile Contours With Application to Bivariate Conditional Growth Charts," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 397-409, March.
    12. Daniel Hlubinka & Lukáš Kotík & Miroslav Šiman, 2022. "Multivariate quantiles with both overall and directional probability interpretation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1586-1604, December.
    13. repec:dau:papers:123456789/4648 is not listed on IDEAS
    14. repec:hal:spmain:info:hdl:2441/4c5431jp6o888pdrcs0fuirl40 is not listed on IDEAS
    15. Guillaume Carlier & Victor Chernozhukov & Alfred Galichon, 2016. "Vector Quantile Regression: An Optimal Transport Approach," SciencePo Working papers hal-03567920, HAL.
    16. Taddy, Matthew A. & Kottas, Athanasios, 2010. "A Bayesian Nonparametric Approach to Inference for Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 357-369.
    17. Robert Serfling, 2002. "Quantile functions for multivariate analysis: approaches and applications," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 56(2), pages 214-232, May.
    18. Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers 36/17, Institute for Fiscal Studies.
    19. Hlubinka, Daniel & Šiman, Miroslav, 2013. "On elliptical quantiles in the quantile regression setup," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 163-171.
    20. Michael Guggisberg, 2023. "A Bayesian Approach to Multiple-Output Quantile Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(544), pages 2736-2745, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sulkhan Chavleishvili & Simone Manganelli, 2024. "Forecasting and stress testing with quantile vector autoregression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 66-85, January.
    2. Marc Hallin & Miroslav Šiman, 2016. "Multiple-Output Quantile Regression," Working Papers ECARES ECARES 2016-03, ULB -- Universite Libre de Bruxelles.
    3. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    4. Chen, Zhao & Cheng, Vivian Xinyi & Liu, Xu, 2024. "Reprint: Hypothesis testing on high dimensional quantile regression," Journal of Econometrics, Elsevier, vol. 239(2).
    5. Chong-Chuo Chang & Oshamah Lin Lin & Oshamah Yu-Cheng Chang & Oshamah Kun-Zhan Hsu, 2023. "Impact of Financial Liberalization on Firm Risk," Advances in Decision Sciences, Asia University, Taiwan, vol. 27(3), pages 14-45, September.
    6. Chen, Le-Yu & Lee, Sokbae, 2023. "Sparse quantile regression," Journal of Econometrics, Elsevier, vol. 235(2), pages 2195-2217.
    7. Sun, Zhaoyang & Liu, Ling & Pan, Runquan & Wang, Yiwei & Zhang, Bingbing, 2025. "Tourism and economic growth: The role of institutional quality," International Review of Economics & Finance, Elsevier, vol. 98(C).
    8. Xianling Ren & Xinping Yu, 2024. "Hedging performance analysis of energy markets: Evidence from copula quantile regression," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(3), pages 432-450, March.
    9. Shu, Lei & Hao, Yifan & Chen, Yu & Yang, Qing, 2025. "SFQRA: Scaled factor-augmented quantile regression with aggregation in conditional mean forecasting," Journal of Multivariate Analysis, Elsevier, vol. 207(C).
    10. Chen, Zhao & Cheng, Vivian Xinyi & Liu, Xu, 2024. "Hypothesis testing on high dimensional quantile regression," Journal of Econometrics, Elsevier, vol. 238(1).
    11. Lee, Sokbae & Liao, Yuan & Seo, Myung Hwan & Shin, Youngki, 2025. "Fast inference for quantile regression with tens of millions of observations," Journal of Econometrics, Elsevier, vol. 249(PA).
    12. Hatice Jenkins & Ezuldeen Alshareef & Amer Mohamad, 2023. "The impact of corruption on commercial banks' credit risk: Evidence from a panel quantile regression," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1364-1375, April.
    13. Balcilar, Mehmet & Ozdemir, Zeynel Abidin & Ozdemir, Huseyin & Wohar, Mark E., 2020. "Transmission of US and EU Economic Policy Uncertainty Shock to Asian Economies in Bad and Good Times," IZA Discussion Papers 13274, Institute of Labor Economics (IZA).
    14. Vidal-Llana, Xenxo & Guillén, Montserrat, 2022. "Cross-sectional quantile regression for estimating conditional VaR of returns during periods of high volatility," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    15. Daniel Hlubinka & Lukáš Kotík & Miroslav Šiman, 2022. "Multivariate quantiles with both overall and directional probability interpretation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1586-1604, December.
    16. Shahla Akram & Zahid Pervaiz, 2024. "The role of institutions and social inclusion in trust building," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(4), pages 3887-3903, August.
    17. Wen, Jiawei & Yang, Songshan & Wang, Christina Dan & Jiang, Yifan & Li, Runze, 2025. "Feature-splitting algorithms for ultrahigh dimensional quantile regression," Journal of Econometrics, Elsevier, vol. 249(PA).
    18. Ahmed, Walid M.A., 2021. "Stock market reactions to upside and downside volatility of Bitcoin: A quantile analysis," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    19. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    20. Anne M. Lausier & Shaleen Jain, 2018. "Diversity in global patterns of observed precipitation variability and change on river basin scales," Climatic Change, Springer, vol. 149(2), pages 261-275, July.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:249:y:2025:i:pa:s0304407624001532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.