IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v172y2013i2p275-282.html
   My bibliography  Save this article

Extended Neyman smooth goodness-of-fit tests, applied to competing heavy-tailed distributions

Author

Listed:
  • McCulloch, J. Huston
  • Percy, E. Richard

Abstract

A simplified version of the Neyman (1937) “Smooth” goodness-of-fit test is extended to account for the presence of estimated model parameters, thereby removing overfitting bias. Using a Lagrange Multiplier approach rather than the Likelihood Ratio statistic proposed by Neyman greatly simplifies the calculations. Polynomials, splines, and the step function of Pearson’s test are compared as alternative perturbations to the theoretical uniform distribution. The extended tests have negligible size distortion and more power than standard tests. The tests are applied to competing symmetric leptokurtic distributions with US stock return data. These are generally rejected, primarily because of the presence of skewness.

Suggested Citation

  • McCulloch, J. Huston & Percy, E. Richard, 2013. "Extended Neyman smooth goodness-of-fit tests, applied to competing heavy-tailed distributions," Journal of Econometrics, Elsevier, vol. 172(2), pages 275-282.
  • Handle: RePEc:eee:econom:v:172:y:2013:i:2:p:275-282
    DOI: 10.1016/j.jeconom.2012.08.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407612002023
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blattberg, Robert C & Gonedes, Nicholas J, 1974. "A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices," The Journal of Business, University of Chicago Press, vol. 47(2), pages 244-280, April.
    2. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    3. Hagerman, Robert L, 1978. "More Evidence on the Distribution of Security Returns," Journal of Finance, American Finance Association, vol. 33(4), pages 1213-1221, September.
    4. Perry, Philip R., 1983. "More Evidence on the Nature of the Distribution of Security Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 18(02), pages 211-221, June.
    5. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    6. Praetz, Peter D, 1972. "The Distribution of Share Price Changes," The Journal of Business, University of Chicago Press, vol. 45(1), pages 49-55, January.
    7. Jushan Bai, 2003. "Testing Parametric Conditional Distributions of Dynamic Models," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 531-549, August.
    8. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters,in: THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78 World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:gam:jecnmx:v:4:y:2016:i:2:p:25:d:69492 is not listed on IDEAS
    2. Marc S. Paolella, 2016. "Stable-GARCH Models for Financial Returns: Fast Estimation and Tests for Stability," Econometrics, MDPI, Open Access Journal, vol. 4(2), pages 1-28, May.
    3. Paolella, Marc S., 2017. "Asymmetric stable Paretian distribution testing," Econometrics and Statistics, Elsevier, vol. 1(C), pages 19-39.

    More about this item

    Keywords

    Stable distribution; Student t distribution; Generalized error distribution; Lagrange multiplier test;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:172:y:2013:i:2:p:275-282. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.