IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v165y2011i1p20-29.html
   My bibliography  Save this article

Control variate method for stationary processes

Author

Listed:
  • Amano, Tomoyuki
  • Taniguchi, Masanobu

Abstract

The sample mean is one of the most natural estimators of the population mean based on independent identically distributed sample. However, if some control variate is available, it is known that the control variate method reduces the variance of the sample mean. The control variate method often assumes that the variable of interest and the control variable are i.i.d. Here we assume that these variables are stationary processes with spectral density matrices, i.e. dependent. Then we propose an estimator of the mean of the stationary process of interest by using control variate method based on nonparametric spectral estimator. It is shown that this estimator improves the sample mean in the sense of mean square error. Also this analysis is extended to the case when the mean dynamics is of the form of regression. Then we propose a control variate estimator for the regression coefficients which improves the least squares estimator (LSE). Numerical studies will be given to see how our estimator improves the LSE.

Suggested Citation

  • Amano, Tomoyuki & Taniguchi, Masanobu, 2011. "Control variate method for stationary processes," Journal of Econometrics, Elsevier, vol. 165(1), pages 20-29.
  • Handle: RePEc:eee:econom:v:165:y:2011:i:1:p:20-29
    DOI: 10.1016/j.jeconom.2011.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407611000959
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2011.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reuven Y. Rubinstein & Ruth Marcus, 1985. "Efficiency of Multivariate Control Variates in Monte Carlo Simulation," Operations Research, INFORMS, vol. 33(3), pages 661-677, June.
    2. S. S. Lavenberg & P. D. Welch, 1981. "A Perspective on the Use of Control Variables to Increase the Efficiency of Monte Carlo Simulations," Management Science, INFORMS, vol. 27(3), pages 322-335, March.
    3. Barry L. Nelson, 1990. "Control Variate Remedies," Operations Research, INFORMS, vol. 38(6), pages 974-992, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsai, Shing Chih, 2011. "Selecting the best simulated system with weighted control-variate estimators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 705-717.
    2. Kenneth W. Bauer & James R. Wilson, 1992. "Control‐variate selection criteria," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(3), pages 307-321, April.
    3. Shing Chih Tsai & Chen Hao Kuo, 2012. "Screening and selection procedures with control variates and correlation induction techniques," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(5), pages 340-361, August.
    4. Pellizzari, P., 2005. "Static hedging of multivariate derivatives by simulation," European Journal of Operational Research, Elsevier, vol. 166(2), pages 507-519, October.
    5. Wu, Junqi & Niu, Zhibin & Li, Xiang & Huang, Lizhen & Nielsen, Per Sieverts & Liu, Xiufeng, 2023. "Understanding multi-scale spatiotemporal energy consumption data: A visual analysis approach," Energy, Elsevier, vol. 263(PD).
    6. Lee, Jinkyu & Bae, Sanghyeon & Kim, Woo Chang & Lee, Yongjae, 2023. "Value function gradient learning for large-scale multistage stochastic programming problems," European Journal of Operational Research, Elsevier, vol. 308(1), pages 321-335.
    7. Zhang, M.M. & Wang, Qunwei & Zhou, Dequn & Ding, H., 2019. "Evaluating uncertain investment decisions in low-carbon transition toward renewable energy," Applied Energy, Elsevier, vol. 240(C), pages 1049-1060.
    8. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Chen, H.T., 2017. "Optimal design of subsidy to stimulate renewable energy investments: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 873-883.
    9. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    10. Mingming Zhang & Dequn Zhou & Hao Ding & Jingliang Jin, 2016. "Biomass Power Generation Investment in China: A Real Options Evaluation," Sustainability, MDPI, vol. 8(6), pages 1-22, June.
    11. Assereto, Martina & Byrne, Julie, 2021. "No real option for solar in Ireland: A real option valuation of utility scale solar investment in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    12. Rubinstein, Reuven Y., 1986. "The score function approach for sensitivity analysis of computer simulation models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 28(5), pages 351-379.
    13. Paul Glasserman & Bin Yu, 2005. "Large Sample Properties of Weighted Monte Carlo Estimators," Operations Research, INFORMS, vol. 53(2), pages 298-312, April.
    14. Timothy C. Hesterberg & Barry L. Nelson, 1998. "Control Variates for Probability and Quantile Estimation," Management Science, INFORMS, vol. 44(9), pages 1295-1312, September.
    15. Michael P. Bailey & Marcelo C. Bartroli & Keebom Kang & Alexander J. Callahan, 1992. "Establishing Reliability Goals for Naval Major‐Caliber Ammunition," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(7), pages 877-892, December.
    16. Tsai, Shing Chih & Chu, I-Hao, 2012. "Controlled multistage selection procedures for comparison with a standard," European Journal of Operational Research, Elsevier, vol. 223(3), pages 709-721.
    17. Grant, Floyd H. & Solberg, James J., 1983. "Variance reduction techniques in stochastic shortest route analysis: application procedures and results," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 25(4), pages 366-375.
    18. Bo Hu & Matthias Dehmer & Frank Emmert-Streib & Bo Zhang, 2021. "Analysis of the real number of infected people by COVID-19: A system dynamics approach," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-9, March.
    19. Russell Davidson & James G. Mackinnon, 1990. "Regression-Based Methods for Using Control and Antithetic Variates in Monte Carlo Experiments," Working Paper 781, Economics Department, Queen's University.
    20. Kevin S. Zhang & Traian A. Pirvu, 2020. "Numerical Simulation of Exchange Option with Finite Liquidity: Controlled Variate Model," Papers 2006.07771, arXiv.org.

    More about this item

    Keywords

    Control variate method; Stationary processes; Spectral density matrix; Nonparametric spectral estimator;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:165:y:2011:i:1:p:20-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.