IDEAS home Printed from
   My bibliography  Save this article

Control variate method for stationary processes


  • Amano, Tomoyuki
  • Taniguchi, Masanobu


The sample mean is one of the most natural estimators of the population mean based on independent identically distributed sample. However, if some control variate is available, it is known that the control variate method reduces the variance of the sample mean. The control variate method often assumes that the variable of interest and the control variable are i.i.d. Here we assume that these variables are stationary processes with spectral density matrices, i.e. dependent. Then we propose an estimator of the mean of the stationary process of interest by using control variate method based on nonparametric spectral estimator. It is shown that this estimator improves the sample mean in the sense of mean square error. Also this analysis is extended to the case when the mean dynamics is of the form of regression. Then we propose a control variate estimator for the regression coefficients which improves the least squares estimator (LSE). Numerical studies will be given to see how our estimator improves the LSE.

Suggested Citation

  • Amano, Tomoyuki & Taniguchi, Masanobu, 2011. "Control variate method for stationary processes," Journal of Econometrics, Elsevier, vol. 165(1), pages 20-29.
  • Handle: RePEc:eee:econom:v:165:y:2011:i:1:p:20-29
    DOI: 10.1016/j.jeconom.2011.05.003

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. S. S. Lavenberg & P. D. Welch, 1981. "A Perspective on the Use of Control Variables to Increase the Efficiency of Monte Carlo Simulations," Management Science, INFORMS, vol. 27(3), pages 322-335, March.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Control variate method; Stationary processes; Spectral density matrix; Nonparametric spectral estimator;

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:165:y:2011:i:1:p:20-29. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.