IDEAS home Printed from
   My bibliography  Save this paper

Static Hedging of Multivariate Derivatives by Simulation


  • Paolo Pellizzari

    (University of Venice)


We propose an approximate static hedging procedure for multivariate derivatives. The hedging portfolio is composed of statically held simple univariate options, optimally weighted minimizing the variance of the difference between the target claim and the approximate replicating portfolio. The method uses simulated paths to estimate the weights of the hedging portfolio and is related to Monte Carlo control variates techniques. We report numerical results showing the performance of this static hedging procedure on bivariate options on the maximum of two assets and on 2- and 7-dimensional portfolio options. It is shown that, in the presence of transaction costs, Value at Risk and Expected Shortfall of the dynamically hedged positions can be higher than the ones obtained by a static hedge.

Suggested Citation

  • Paolo Pellizzari, 2003. "Static Hedging of Multivariate Derivatives by Simulation," Finance 0311013, EconWPA, revised 04 Dec 2003.
  • Handle: RePEc:wpa:wuwpfi:0311013
    Note: Type of Document - pdf; prepared on Latex on Mac; to print on Laser; pages: 23; figures: included

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Leland, Hayne E, 1985. " Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
    2. Stulz, ReneM., 1982. "Options on the minimum or the maximum of two risky assets : Analysis and applications," Journal of Financial Economics, Elsevier, vol. 10(2), pages 161-185, July.
    3. T. Clifton Green & Stephen Figlewski, 1999. "Market Risk and Model Risk for a Financial Institution Writing Options," Journal of Finance, American Finance Association, vol. 54(4), pages 1465-1499, August.
    4. S. S. Lavenberg & P. D. Welch, 1981. "A Perspective on the Use of Control Variables to Increase the Efficiency of Monte Carlo Simulations," Management Science, INFORMS, vol. 27(3), pages 322-335, March.
    5. Yuri M. Kabanov & (*), Mher M. Safarian, 1997. "On Leland's strategy of option pricing with transactions costs," Finance and Stochastics, Springer, vol. 1(3), pages 239-250.
    6. Hans FÃllmer & Peter Leukert, 2000. "Efficient hedging: Cost versus shortfall risk," Finance and Stochastics, Springer, vol. 4(2), pages 117-146.
    7. Riccardo Rebonato & Ian Cooper, 1998. "Coupling backward induction with Monte Carlo simulations: a fast Fourier transform (FFT) approach," Applied Mathematical Finance, Taylor & Francis Journals, vol. 5(2), pages 131-141.
    8. Peter Carr & Katrina Ellis & Vishal Gupta, 1998. "Static Hedging of Exotic Options," Journal of Finance, American Finance Association, vol. 53(3), pages 1165-1190, June.
    9. Boyle, Phelim P., 1988. "A Lattice Framework for Option Pricing with Two State Variables," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(01), pages 1-12, March.
    10. Boyle, Phelim P. & Emanuel, David, 1980. "Discretely adjusted option hedges," Journal of Financial Economics, Elsevier, vol. 8(3), pages 259-282, September.
    11. Hans FÃllmer & Peter Leukert, 1999. "Quantile hedging," Finance and Stochastics, Springer, vol. 3(3), pages 251-273.
    12. Hyungsok Ahn Adviti & Glen Swindle, 1997. "Misspecified asset price models and robust hedging strategies," Applied Mathematical Finance, Taylor & Francis Journals, vol. 4(1), pages 21-36.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Xia Su, 2006. "Hedging Basket Options by Using a Subset of Underlying Assets," Bonn Econ Discussion Papers bgse14_2006, University of Bonn, Germany.
    2. Johannes Siven & Rolf Poulsen, 2009. "Auto-static for the people: risk-minimizing hedges of barrier options," Review of Derivatives Research, Springer, vol. 12(3), pages 193-211, October.

    More about this item


    Monte Carlo methods; option pricing; static and dynamic hedging;

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:0311013. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.