IDEAS home Printed from
   My bibliography  Save this article

Controlled multistage selection procedures for comparison with a standard


  • Tsai, Shing Chih
  • Chu, I-Hao


Comparison with a standard is a general multiple comparison problem, where each system is required to be compared to a single system, referred to as a “standard”, as well as to other alternative systems. The goal is to determine the best system among a number of systems that are better than the standard, or to select the standard when it is equal to or better than the other alternatives. Kim (2005) proposed an efficient fully sequential procedure for comparison with a standard, that obtains a single observation at each stage from the surviving systems, and is one of the most efficient existing procedures. We develop two provably valid multistage selection procedures that take a number of observations from each system and update the variance estimators at each stage. We also employ appropriate control variate technique for each procedure to further improve the efficiency. Empirical results are provided to demonstrate that the proposed procedures are statistically and computationally more efficient than existing fully sequential procedures.

Suggested Citation

  • Tsai, Shing Chih & Chu, I-Hao, 2012. "Controlled multistage selection procedures for comparison with a standard," European Journal of Operational Research, Elsevier, vol. 223(3), pages 709-721.
  • Handle: RePEc:eee:ejores:v:223:y:2012:i:3:p:709-721
    DOI: 10.1016/j.ejor.2012.06.041

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Batur, D. & Choobineh, F., 2010. "A quantile-based approach to system selection," European Journal of Operational Research, Elsevier, vol. 202(3), pages 764-772, May.
    2. S. S. Lavenberg & P. D. Welch, 1981. "A Perspective on the Use of Control Variables to Increase the Efficiency of Monte Carlo Simulations," Management Science, INFORMS, vol. 27(3), pages 322-335, March.
    3. Vadim Lesnevski & Barry L. Nelson & Jeremy Staum, 2007. "Simulation of Coherent Risk Measures Based on Generalized Scenarios," Management Science, INFORMS, vol. 53(11), pages 1756-1769, November.
    4. Barry L. Nelson & David Goldsman, 2001. "Comparisons with a Standard in Simulation Experiments," Management Science, INFORMS, vol. 47(3), pages 449-463, March.
    5. Sriver, Todd A. & Chrissis, James W. & Abramson, Mark A., 2009. "Pattern search ranking and selection algorithms for mixed variable simulation-based optimization," European Journal of Operational Research, Elsevier, vol. 198(3), pages 878-890, November.
    6. Pichitlamken, Juta & Nelson, Barry L. & Hong, L. Jeff, 2006. "A sequential procedure for neighborhood selection-of-the-best in optimization via simulation," European Journal of Operational Research, Elsevier, vol. 173(1), pages 283-298, August.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Tsai, Shing Chih & Zheng, Ya-Xin, 2013. "A simulation optimization approach for a two-echelon inventory system with service level constraints," European Journal of Operational Research, Elsevier, vol. 229(2), pages 364-374.
    2. Tsai, Shing Chih & Fu, Sheng Yang, 2014. "Genetic-algorithm-based simulation optimization considering a single stochastic constraint," European Journal of Operational Research, Elsevier, vol. 236(1), pages 113-125.
    3. repec:spr:annopr:v:254:y:2017:i:1:d:10.1007_s10479-017-2459-6 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:223:y:2012:i:3:p:709-721. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.