IDEAS home Printed from
   My bibliography  Save this article

Efficient comparison of constrained systems using dormancy


  • Healey, Christopher M.
  • Andradóttir, Sigrún
  • Kim, Seong-Hee


We consider the problem of finding the best simulated system under a primary performance measure, while also satisfying stochastic constraints on secondary performance measures. We improve upon existing constrained selection procedures by allowing certain systems to become dormant, halting sampling for those systems as the procedure continues. A system goes dormant when it is found inferior to another system whose feasibility has not been determined, and returns to contention only if its superior system is eliminated. If found feasible, the superior system will eliminate the dormant system. By making systems dormant, we avoid collecting unnecessary observations from inferior systems. The paper also proposes other modifications, and studies the impact and benefits of our approaches (compared to similar constrained selection procedures) through experimental results and asymptotic approximations. Additionally, we discuss the difficulties associated with procedures that use sample means of unequal, random sample sizes, which commonly occurs within constrained selection and optimization-via-simulation.

Suggested Citation

  • Healey, Christopher M. & Andradóttir, Sigrún & Kim, Seong-Hee, 2013. "Efficient comparison of constrained systems using dormancy," European Journal of Operational Research, Elsevier, vol. 224(2), pages 340-352.
  • Handle: RePEc:eee:ejores:v:224:y:2013:i:2:p:340-352 DOI: 10.1016/j.ejor.2012.08.012

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Chen, E. Jack & Kelton, W. David, 2005. "Sequential selection procedures: Using sample means to improve efficiency," European Journal of Operational Research, Elsevier, vol. 166(1), pages 133-153, October.
    2. John Butler & Douglas J. Morrice & Peter W. Mullarkey, 2001. "A Multiple Attribute Utility Theory Approach to Ranking and Selection," Management Science, INFORMS, vol. 47(6), pages 800-816, June.
    3. Teng, Suyan & Lee, Loo Hay & Chew, Ek Peng, 2010. "Integration of indifference-zone with multi-objective computing budget allocation," European Journal of Operational Research, Elsevier, vol. 203(2), pages 419-429, June.
    4. Pichitlamken, Juta & Nelson, Barry L. & Hong, L. Jeff, 2006. "A sequential procedure for neighborhood selection-of-the-best in optimization via simulation," European Journal of Operational Research, Elsevier, vol. 173(1), pages 283-298, August.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:224:y:2013:i:2:p:340-352. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.