IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v508y2025ics0304380025002297.html

Balancing economics and ecology in ocean ecosystems: A bioeconomic predator-prey model

Author

Listed:
  • Outaaoui, Khalid
  • El Harch, Ilham Ait
  • EL Foutayeni, Youssef

Abstract

This study presents a game-theoretic model that links ecological dynamics with economic decision making in the context of Moroccan fisheries. Focusing on the interaction between European anchovy (Engraulis encrasicolus) and Anglerfish (Lophius budegassa), the model captures predator–prey relationships and enterprise-level fishing behavior. By integrating differential equations with strategic optimization, we analyze how two competing fishing sectors FENIP and MIPROMER can maximize economic returns under biological constraints. The equilibrium solutions derived through Nash-based methods highlight scenarios where both profitability and ecosystem balance can be maintained. These results provide actionable insights for designing more adaptive and sustainable fisheries policies.

Suggested Citation

  • Outaaoui, Khalid & El Harch, Ilham Ait & EL Foutayeni, Youssef, 2025. "Balancing economics and ecology in ocean ecosystems: A bioeconomic predator-prey model," Ecological Modelling, Elsevier, vol. 508(C).
  • Handle: RePEc:eee:ecomod:v:508:y:2025:i:c:s0304380025002297
    DOI: 10.1016/j.ecolmodel.2025.111243
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380025002297
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2025.111243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. H. Scott Gordon, 1954. "The Economic Theory of a Common-Property Resource: The Fishery," Palgrave Macmillan Books, in: Chennat Gopalakrishnan (ed.), Classic Papers in Natural Resource Economics, chapter 9, pages 178-203, Palgrave Macmillan.
    2. Barnes, Belinda & Sidhu, Harvinder, 2013. "The impact of marine closed areas on fishing yield under a variety of management strategies and stock depletion levels," Ecological Modelling, Elsevier, vol. 269(C), pages 113-125.
    3. Tsehaye, Iyob & Nagelkerke, Leopold A.J., 2008. "Exploring optimal fishing scenarios for the multispecies artisanal fisheries of Eritrea using a trophic model," Ecological Modelling, Elsevier, vol. 212(3), pages 319-333.
    4. Clark, Colin W. & Munro, Gordon R., 1975. "The economics of fishing and modern capital theory: A simplified approach," Journal of Environmental Economics and Management, Elsevier, vol. 2(2), pages 92-106, December.
    5. H. Scott Gordon, 1954. "The Economic Theory of a Common-Property Resource: The Fishery," Journal of Political Economy, University of Chicago Press, vol. 62(2), pages 124-124.
    6. M. Seetharama Gowda & Jong-Shi Pang, 1992. "On Solution Stability of the Linear Complementarity Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 77-83, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiren Wang & Tianhao Zhi, 2025. "Sustainability Risks under Lotka-Volterra Dynamics," Papers 2509.04780, arXiv.org, revised Oct 2025.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eppink, Florian V. & van den Bergh, Jeroen C.J.M., 2007. "Ecological theories and indicators in economic models of biodiversity loss and conservation: A critical review," Ecological Economics, Elsevier, vol. 61(2-3), pages 284-293, March.
    2. Grafton, R. Quentin & Kompas, Tom & Chu, Long & Che, Nhu, 2010. "Maximum economic yield," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(3), pages 1-8.
    3. Pedro Pintassilgo & Michael Finus & Marko Lindroos & Gordon Munro, 2010. "Stability and Success of Regional Fisheries Management Organizations," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 46(3), pages 377-402, July.
    4. B. N. Obegi & I. Sarfo & G. N. Morara & P. Boera & E. Waithaka & A. Mutie, 2020. "Bio-economic modeling of fishing activities in Kenya: the case of Lake Naivasha Ramsar site," Journal of Bioeconomics, Springer, vol. 22(1), pages 15-31, April.
    5. Gordon Munro & U. Sumaila, 2015. "On the Contributions of Colin Clark to Fisheries Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(1), pages 1-17, May.
    6. Stahn, Hubert, 2026. "Voluntary management of fisheries under the threat of uncertain legislation," Ecological Economics, Elsevier, vol. 239(C).
    7. McWhinnie, Stephanie F., 2009. "The tragedy of the commons in international fisheries: An empirical examination," Journal of Environmental Economics and Management, Elsevier, vol. 57(3), pages 321-333, May.
    8. Suphaphiphat, Nujin & Peretto, Pietro F. & Valente, Simone, 2015. "Endogenous growth and property rights over renewable resources," European Economic Review, Elsevier, vol. 76(C), pages 125-151.
    9. Guillaume Bataille & Benteng Zou, 2024. "International Fisheries Agreements: Endogenous Exits, Shapley Values, and Moratorium Fishing Policy," AMSE Working Papers 2421, Aix-Marseille School of Economics, France.
    10. Bertram, Christine, 2010. "Integrating biodiversity indices into a multi-species optimal control model," Kiel Working Papers 1662, Kiel Institute for the World Economy (IfW Kiel).
    11. Per Sandberg, 2006. "Variable unit costs in an output-regulated industry: The Fishery," Applied Economics, Taylor & Francis Journals, vol. 38(9), pages 1007-1018.
    12. Louis-Pascal Mahé & Carole Ropars, 2001. "L'exploitation régulée d'une ressource renouvelable : inefficacité d'un rationnement factoriel et efficacité des quotas individuels transférables," Économie et Prévision, Programme National Persée, vol. 148(2), pages 141-156.
    13. Ragnar Arnason, 2009. "Conflicting uses of marine resources: can ITQs promote an efficient solution? ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 53(1), pages 145-174, January.
    14. Schnier, Kurt E. & Anderson, Christopher M., 2006. "Decision making in patchy resource environments: Spatial misperception of bioeconomic models," Journal of Economic Behavior & Organization, Elsevier, vol. 61(2), pages 234-254, October.
    15. Ben White, 2000. "A Review of the Economics of Biological Natural Resources," Journal of Agricultural Economics, Wiley Blackwell, vol. 51(3), pages 419-462, September.
    16. Lone Grønbæk Kronbak, 2002. "The Dynamics of an Open Access: The case of the Baltic Sea Cod Fishery - A Strategic Approach -," Working Papers 31/02, University of Southern Denmark, Department of Sociology, Environmental and Business Economics.
    17. Wilen, James E., 2000. "Renewable Resource Economists and Policy: What Differences Have We Made?," Journal of Environmental Economics and Management, Elsevier, vol. 39(3), pages 306-327, May.
    18. Manuel Coelho & Jose Antonio Filipe & Manuel Alberto M. Ferreira & Rui Junqueira Lopes, 2013. "Extinction Revisited: “Allee Effect” and Irreversibility in “Schooling” Fisheries," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 3(1), pages 405-405.
    19. Bene, C. & Doyen, L. & Gabay, D., 2001. "A viability analysis for a bio-economic model," Ecological Economics, Elsevier, vol. 36(3), pages 385-396, March.
    20. Yukichika Kawata, 2011. "Extended Model of the Natural Resource Input-Output Market: Game Meat in Latvia as an Example," South-Eastern Europe Journal of Economics, Association of Economic Universities of South and Eastern Europe and the Black Sea Region, vol. 9(2), pages 167-185.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:508:y:2025:i:c:s0304380025002297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.