IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v507y2025ics0304380025001292.html

A generational randomized growth model for fall-spawning Atlantic herring: Insights from real-world data

Author

Listed:
  • Burbank, Jacob
  • Cortés, Juan-Carlos
  • Pérez, Cristina Luisovna
  • Villanueva, Rafael-Jacinto

Abstract

The Southern Gulf of St. Lawrence fall-spawning Atlantic herring has seen rapid declines in biomass and is currently in the cautious zone of the Precautionary Approach Framework. Moreover, it is rapidly approaching its limit reference point. In this work, we build and calibrate a realistic model using random differential equations and age-length data for this species. The calibrated random model’s 95% probabilistic intervals encompass nearly all observed data points while maintaining narrow uncertainty bounds, exhibiting its capacity to capture data variability. Additionally, the Symmetric Mean Absolute Percentage Error between the model’s mean predictions and observed values remains below 2.86% across all calibrated years, indicating that the model effectively represents the species’ growth dynamics. Our results indicate that over time the population is experiencing a reduction in maximum size and is not achieving as advanced ages. Furthermore, we show that there is greater intra-annual variability over time, pointing towards less consistent growth patterns in recent years. These changes in the growth dynamics of the Southern Gulf of St. Lawrence fall-spawning Atlantic herring, suggested by our model, could significantly reduce reproductive output and hinder the species’ rebuilding capacity.

Suggested Citation

  • Burbank, Jacob & Cortés, Juan-Carlos & Pérez, Cristina Luisovna & Villanueva, Rafael-Jacinto, 2025. "A generational randomized growth model for fall-spawning Atlantic herring: Insights from real-world data," Ecological Modelling, Elsevier, vol. 507(C).
  • Handle: RePEc:eee:ecomod:v:507:y:2025:i:c:s0304380025001292
    DOI: 10.1016/j.ecolmodel.2025.111144
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380025001292
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2025.111144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    2. Chao Chen & Jamie Twycross & Jonathan M Garibaldi, 2017. "A new accuracy measure based on bounded relative error for time series forecasting," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-23, March.
    3. Alexander Shapiro & Jos Berge, 2002. "Statistical inference of minimum rank factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 67(1), pages 79-94, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    2. Urko Aguirre-Larracoechea & Cruz E. Borges, 2021. "Imputation for Repeated Bounded Outcome Data: Statistical and Machine-Learning Approaches," Mathematics, MDPI, vol. 9(17), pages 1-27, August.
    3. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
    4. Brummelhuis, Raymond & Luo, Zhongmin, 2019. "Bank Net Interest Margin Forecasting and Capital Adequacy Stress Testing by Machine Learning Techniques," MPRA Paper 94779, University Library of Munich, Germany.
    5. Maticka, Martin J. & Mahmoud, Thair S., 2025. "Bayesian Belief Networks: Redefining wholesale electricity price modelling in high penetration non-firm renewable generation power systems," Renewable Energy, Elsevier, vol. 239(C).
    6. Jenny Cifuentes & Geovanny Marulanda & Antonio Bello & Javier Reneses, 2020. "Air Temperature Forecasting Using Machine Learning Techniques: A Review," Energies, MDPI, vol. 13(16), pages 1-28, August.
    7. Claudia Furlan & Cinzia Mortarino & Mohammad Salim Zahangir, 2021. "Interaction among three substitute products: an extended innovation diffusion model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 269-293, March.
    8. Wen-Jie Liu & Yu-Ting Bai & Xue-Bo Jin & Ting-Li Su & Jian-Lei Kong, 2022. "Adaptive Broad Echo State Network for Nonstationary Time Series Forecasting," Mathematics, MDPI, vol. 10(17), pages 1-21, September.
    9. Apostolos Ampountolas, 2025. "Addressing complex seasonal patterns in hotel forecasting: a comparative study," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 24(2), pages 143-152, April.
    10. Cheng-Hong Yang & Po-Yin Chang, 2020. "Forecasting the Demand for Container Throughput Using a Mixed-Precision Neural Architecture Based on CNN–LSTM," Mathematics, MDPI, vol. 8(10), pages 1-17, October.
    11. Jacobs, Bas & Tobi, Hilde & Hengeveld, Geerten M., 2024. "Linking error measures to model questions," Ecological Modelling, Elsevier, vol. 487(C).
    12. repec:prg:jnlcfu:v:2022:y:2022:i:1:id:572 is not listed on IDEAS
    13. Nowak, Piotr Bolesław, 2016. "The MLE of the mean of the exponential distribution based on grouped data is stochastically increasing," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 49-54.
    14. Chang, Andrew C. & Hanson, Tyler J., 2016. "The accuracy of forecasts prepared for the Federal Open Market Committee," Journal of Economics and Business, Elsevier, vol. 83(C), pages 23-43.
    15. Andrikopoulos, Andreas & Merika, Anna & Stoupos, Nikolaos, 2025. "The effect of oil prices on the US shipping stock prices: The mediating role of freight rates and economic indicators," Journal of Commodity Markets, Elsevier, vol. 38(C).
    16. Camilo Alberto Cárdenas-Hurtado & Aaron Levi Garavito-Acosta & Jorge Hernán Toro-Córdoba, 2018. "Asymmetric Effects of Terms of Trade Shocks on Tradable and Non-tradable Investment Rates: The Colombian Case," Borradores de Economia 1043, Banco de la Republica de Colombia.
    17. Dima, Bogdan & Dima, Ştefana Maria & Ioan, Roxana, 2025. "The short-run impact of investor expectations’ past volatility on current predictions: The case of VIX," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 98(C).
    18. Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
    19. Michael Vössing & Niklas Kühl & Matteo Lind & Gerhard Satzger, 2022. "Designing Transparency for Effective Human-AI Collaboration," Information Systems Frontiers, Springer, vol. 24(3), pages 877-895, June.
    20. Anastasiou, Andreas, 2017. "Bounds for the normal approximation of the maximum likelihood estimator from m-dependent random variables," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 171-181.
    21. Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:507:y:2025:i:c:s0304380025001292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.