IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v477y2023ics030438002200357x.html
   My bibliography  Save this article

Modeling collective motion for fish schooling via multi-agent reinforcement learning

Author

Listed:
  • Wang, Xin
  • Liu, Shuo
  • Yu, Yifan
  • Yue, Shengzhi
  • Liu, Ying
  • Zhang, Fumin
  • Lin, Yuanshan

Abstract

Complex collective motion patterns can emerge from very simple local interactions among individual agents. However, it is still unclear how and why the interactions among individuals lead to the emergence of collective motion. Modeling is an effective way to understand the mechanisms that govern collective animal motions. In this work, to avoid imposing fixed sets of rules on collective motion models a priori as classical approaches do, we propose a new method of modeling collective motion for fish schooling via multi-agent reinforcement learning. We model each fish individual as an artificial learning agent, whose policy is acquired by using mean field Q-learning (MFQ). The observation of each fish agent is represented as a multi-channel image, where each channel describes a different feature, such as an agent's position or an agent's orientation. The policy of an agent is approximated with a neural network trained with the MFQ algorithm, during which, agents are rewarded (or penalized) according to the number of neighbors and consecutive collisions between individuals. We study the dynamics of collective motion that emerge from the learned policy. The experimental results show that the learned policy can produce collective motion in groups of various sizes. In addition, three different collective motion patterns observed in nature emerged during the training process. The learned policy can help us gain new insight into how and why individual interactions lead to collective motion. This study also demonstrates that multi-agent reinforcement learning has great potential to be a new approach for analysis and modeling of collective motion.

Suggested Citation

  • Wang, Xin & Liu, Shuo & Yu, Yifan & Yue, Shengzhi & Liu, Ying & Zhang, Fumin & Lin, Yuanshan, 2023. "Modeling collective motion for fish schooling via multi-agent reinforcement learning," Ecological Modelling, Elsevier, vol. 477(C).
  • Handle: RePEc:eee:ecomod:v:477:y:2023:i:c:s030438002200357x
    DOI: 10.1016/j.ecolmodel.2022.110259
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438002200357X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.110259?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    2. Oriol Vinyals & Igor Babuschkin & Wojciech M. Czarnecki & Michaël Mathieu & Andrew Dudzik & Junyoung Chung & David H. Choi & Richard Powell & Timo Ewalds & Petko Georgiev & Junhyuk Oh & Dan Horgan & M, 2019. "Grandmaster level in StarCraft II using multi-agent reinforcement learning," Nature, Nature, vol. 575(7782), pages 350-354, November.
    3. Andrea López-Incera & Katja Ried & Thomas Müller & Hans J Briegel, 2020. "Development of swarm behavior in artificial learning agents that adapt to different foraging environments," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-38, December.
    4. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    5. Charlotte K. Hemelrijk & Hanspeter Kunz, 2005. "Density distribution and size sorting in fish schools: an individual-based model," Behavioral Ecology, International Society for Behavioral Ecology, vol. 16(1), pages 178-187, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weifan Long & Taixian Hou & Xiaoyi Wei & Shichao Yan & Peng Zhai & Lihua Zhang, 2023. "A Survey on Population-Based Deep Reinforcement Learning," Mathematics, MDPI, vol. 11(10), pages 1-17, May.
    2. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    3. Li, Wenqing & Ni, Shaoquan, 2022. "Train timetabling with the general learning environment and multi-agent deep reinforcement learning," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 230-251.
    4. János Kramár & Tom Eccles & Ian Gemp & Andrea Tacchetti & Kevin R. McKee & Mateusz Malinowski & Thore Graepel & Yoram Bachrach, 2022. "Negotiation and honesty in artificial intelligence methods for the board game of Diplomacy," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Christoph Graf & Viktor Zobernig & Johannes Schmidt & Claude Klöckl, 2024. "Computational Performance of Deep Reinforcement Learning to Find Nash Equilibria," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 529-576, February.
    6. Yassine Chemingui & Adel Gastli & Omar Ellabban, 2020. "Reinforcement Learning-Based School Energy Management System," Energies, MDPI, vol. 13(23), pages 1-21, December.
    7. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    8. Huang, Ruchen & He, Hongwen & Gao, Miaojue, 2023. "Training-efficient and cost-optimal energy management for fuel cell hybrid electric bus based on a novel distributed deep reinforcement learning framework," Applied Energy, Elsevier, vol. 346(C).
    9. Neha Soni & Enakshi Khular Sharma & Narotam Singh & Amita Kapoor, 2019. "Impact of Artificial Intelligence on Businesses: from Research, Innovation, Market Deployment to Future Shifts in Business Models," Papers 1905.02092, arXiv.org.
    10. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    11. Taejong Joo & Hyunyoung Jun & Dongmin Shin, 2022. "Task Allocation in Human–Machine Manufacturing Systems Using Deep Reinforcement Learning," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    12. Mahmoud Mahfouz & Tucker Balch & Manuela Veloso & Danilo Mandic, 2021. "Learning to Classify and Imitate Trading Agents in Continuous Double Auction Markets," Papers 2110.01325, arXiv.org, revised Oct 2021.
    13. Oleh Lukianykhin & Tetiana Bogodorova, 2021. "Voltage Control-Based Ancillary Service Using Deep Reinforcement Learning," Energies, MDPI, vol. 14(8), pages 1-22, April.
    14. Wu, Yuankai & Tan, Huachun & Peng, Jiankun & Zhang, Hailong & He, Hongwen, 2019. "Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 247(C), pages 454-466.
    15. Chen, Jiaxin & Shu, Hong & Tang, Xiaolin & Liu, Teng & Wang, Weida, 2022. "Deep reinforcement learning-based multi-objective control of hybrid power system combined with road recognition under time-varying environment," Energy, Elsevier, vol. 239(PC).
    16. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
    17. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    18. Alessio Brini & Daniele Tantari, 2021. "Deep Reinforcement Trading with Predictable Returns," Papers 2104.14683, arXiv.org, revised May 2023.
    19. Georgios D. Kontes & Georgios I. Giannakis & Víctor Sánchez & Pablo De Agustin-Camacho & Ander Romero-Amorrortu & Natalia Panagiotidou & Dimitrios V. Rovas & Simone Steiger & Christopher Mutschler & G, 2018. "Simulation-Based Evaluation and Optimization of Control Strategies in Buildings," Energies, MDPI, vol. 11(12), pages 1-23, December.
    20. Chanjuan Liu & Jinmiao Cong & Tianhao Zhao & Enqiang Zhu, 2023. "Improving Agent Decision Payoffs via a New Framework of Opponent Modeling," Mathematics, MDPI, vol. 11(14), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:477:y:2023:i:c:s030438002200357x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.