IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v433y2020ics0304380020302751.html
   My bibliography  Save this article

A new phenomenological model to describe root-soil interactions based on percolation theory

Author

Listed:
  • Hunt, Allen G.
  • Faybishenko, Boris
  • Powell, Thomas L.

Abstract

In his paper on net primary productivity of terrestrial communities predicted from climatological data, Rosenzweig (1968) argued that variability in productivity is well accounted for by (evapo)-transpiration, and that water from transpiration is, on global scales, the most variable component in the photosynthesis reaction. The goal of this paper is to investigate whether variability in plant growth on local scales and within species is primarily related to transpiration under several scenarios including different terrain curvature, slope aspect, soil characteristics, and climate ranges. We test the hypothesis that this relationship exists because root growth into the surface soil layers (0–2 m) tends to follow paths with minima in resistance, which in turn maximizes water flow and nutrient delivery rates that regulate growth. The set of all connected paths with individual pore-to-pore flow resistances less than a critical, percolating, value forms a cluster with mass fractal dimensionality, df. We propose that roots follow paths through the 2D percolation cluster, defining the set of all optimal flow paths, making the 2D value of df from percolation relevant to root fractal dimensionality. The tortuosity of such optimal paths as defined in percolation theory should then relate root length to root radial extent, linking the parameters of root tortuosity and plant productivity. Our analysis of large data sets across species implies that root radial extent and tree height are both proportional to cumulative transpiration until trees approached maximum height, and their growth rates are proportional to the transpiration rate, not to the moisture content. Local variations in tree height as functions of the variables investigated appear generally consistent with deduced variations in transpiration. Here this correlation is investigated more closely in the context of studies addressing individual tree species.

Suggested Citation

  • Hunt, Allen G. & Faybishenko, Boris & Powell, Thomas L., 2020. "A new phenomenological model to describe root-soil interactions based on percolation theory," Ecological Modelling, Elsevier, vol. 433(C).
  • Handle: RePEc:eee:ecomod:v:433:y:2020:i:c:s0304380020302751
    DOI: 10.1016/j.ecolmodel.2020.109205
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380020302751
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2020.109205?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brian J. Enquist & James H. Brown & Geoffrey B. West, 1998. "Allometric scaling of plant energetics and population density," Nature, Nature, vol. 395(6698), pages 163-165, September.
    2. Brian J. Enquist & James H. Brown & Geoffrey B. West, 1998. "Allometric Scaling of Plant Energetics and Population Density," Working Papers 98-11-104, Santa Fe Institute.
    3. Aertsen, Wim & Kint, Vincent & van Orshoven, Jos & Özkan, Kürşad & Muys, Bart, 2010. "Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests," Ecological Modelling, Elsevier, vol. 221(8), pages 1119-1130.
    4. George W. Koch & Stephen C. Sillett & Gregory M. Jennings & Stephen D. Davis, 2004. "The limits to tree height," Nature, Nature, vol. 428(6985), pages 851-854, April.
    5. Brian J. Enquist & Andrew J. Kerkhoff & Scott C. Stark & Nathan G. Swenson & Megan C. McCarthy & Charles A. Price, 2007. "A general integrative model for scaling plant growth, carbon flux, and functional trait spectra," Nature, Nature, vol. 449(7159), pages 218-222, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hunt, A.G. & Faybishenko, B. & Powell, T.L., 2022. "Test of model of equivalence of tree height growth and transpiration rates in percolation-based phenomenology for root-soil interaction," Ecological Modelling, Elsevier, vol. 465(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yanguang, 2014. "An allometric scaling relation based on logistic growth of cities," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 65-77.
    2. Barnes, Belinda & Mokany, Karel & Roderick, Michael, 2007. "Allocation within a generic scaling framework," Ecological Modelling, Elsevier, vol. 201(2), pages 223-232.
    3. Xinjing Ding & Peixi Su & Zijuan Zhou & Rui Shi, 2019. "Belowground Bud Bank Distribution and Aboveground Community Characteristics along Different Moisture Gradients of Alpine Meadow in the Zoige Plateau, China," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
    4. Sorrell, Steve, 2015. "Reducing energy demand: A review of issues, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 74-82.
    5. Tao, Yong & Lin, Li & Wang, Hanjie & Hou, Chen, 2023. "Superlinear growth and the fossil fuel energy sustainability dilemma: Evidence from six continents," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 39-51.
    6. Chen, Yanguang, 2017. "Multi-scaling allometric analysis for urban and regional development," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 673-689.
    7. Hendriks, A. Jan, 2007. "The power of size: A meta-analysis reveals consistency of allometric regressions," Ecological Modelling, Elsevier, vol. 205(1), pages 196-208.
    8. Peters, Ronny & Olagoke, Adewole & Berger, Uta, 2018. "A new mechanistic theory of self-thinning: Adaptive behaviour of plants explains the shape and slope of self-thinning trajectories," Ecological Modelling, Elsevier, vol. 390(C), pages 1-9.
    9. He, Ji-Huan, 2007. "Shrinkage of body size of small insects: A possible link to global warming?," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 727-729.
    10. Wiegand, Kerstin & Saltz, David & Ward, David & Levin, Simon A., 2008. "The role of size inequality in self-thinning: A pattern-oriented simulation model for arid savannas," Ecological Modelling, Elsevier, vol. 210(4), pages 431-445.
    11. Song, Dong-Ming & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2009. "Statistical properties of world investment networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(12), pages 2450-2460.
    12. Tyson L Swetnam & Christopher D O’Connor & Ann M Lynch, 2016. "Tree Morphologic Plasticity Explains Deviation from Metabolic Scaling Theory in Semi-Arid Conifer Forests, Southwestern USA," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-16, July.
    13. Lu, Zhihao & Yin, Di & Chen, Peng & Wang, Hongzhen & Yang, Yuhang & Huang, Guangtuan & Cai, Lankun & Zhang, Lehua, 2020. "Power-generating trees: Direct bioelectricity production from plants with microbial fuel cells," Applied Energy, Elsevier, vol. 268(C).
    14. Louis J. Irving, 2015. "Carbon Assimilation, Biomass Partitioning and Productivity in Grasses," Agriculture, MDPI, vol. 5(4), pages 1-19, November.
    15. Jiang Zhang & Lingfei Wu, 2013. "Allometry and Dissipation of Ecological Flow Networks," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-8, September.
    16. Ogawa, Kazuharu, 2009. "Mathematical analysis of change in forest carbon use efficiency with stand development: A case study on Abies veitchii Lindl," Ecological Modelling, Elsevier, vol. 220(11), pages 1419-1424.
    17. Laurent Augusto & Antra Boča, 2022. "Tree functional traits, forest biomass, and tree species diversity interact with site properties to drive forest soil carbon," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Ma, Ping & Han, Xiao-Hui & Lin, Yue & Moore, John & Guo, Yao-Xin & Yue, Ming, 2019. "Exploring the relative importance of biotic and abiotic factors that alter the self-thinning rule: Insights from individual-based modelling and machine-learning," Ecological Modelling, Elsevier, vol. 397(C), pages 16-24.
    19. Harris, Lora A. & Brush, Mark J., 2012. "Bridging the gap between empirical and mechanistic models of aquatic primary production with the metabolic theory of ecology: An example from estuarine ecosystems," Ecological Modelling, Elsevier, vol. 233(C), pages 83-89.
    20. Chen, Yanguang & Wang, Yihan & Li, Xijing, 2019. "Fractal dimensions derived from spatial allometric scaling of urban form," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 122-134.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:433:y:2020:i:c:s0304380020302751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.