IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v505y2025ics0304380025000973.html
   My bibliography  Save this article

Explicit predictions of species richness from net primary productivity: setting and discussion

Author

Listed:
  • Hunt, Allen G.

Abstract

Critical problems in ecology, such as plant species richness and net primary productivity, NPP, are linked with the principal water fluxes of hydrologic sciences, evapotranspiration (plant growth), and run-off (chemical weathering and soil formation). Each of these links is established using modern physics approaches based on percolation theory from complexity studies with the resulting spatio-temporal scaling functions ultimately derived from renormalization-based methods. Approaching such problems from the perspective of the hydrologic fluxes, rather than, e.g., soil moisture content, and using such methods of physics allows application of a direct ecological optimality hypothesis (Darwin-based) regarding maximization of NPP with respect to the fluxes. This procedure opens up possibilities for a wide range of (verified) predictions in (eco-)hydrology as well as a range of discussions on Darwinian and Newtonian perspectives, the value of generalizations from thermodynamics vs. statistical mechanics, simplifications arising from focus on fluxes, rather than state variables, etc., and may provide a foundation for advancing species richness theory as well.

Suggested Citation

  • Hunt, Allen G., 2025. "Explicit predictions of species richness from net primary productivity: setting and discussion," Ecological Modelling, Elsevier, vol. 505(C).
  • Handle: RePEc:eee:ecomod:v:505:y:2025:i:c:s0304380025000973
    DOI: 10.1016/j.ecolmodel.2025.111111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380025000973
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2025.111111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hunt, Allen G. & Faybishenko, Boris & Powell, Thomas L., 2020. "A new phenomenological model to describe root-soil interactions based on percolation theory," Ecological Modelling, Elsevier, vol. 433(C).
    2. Franziska Taubert & Rico Fischer & Jürgen Groeneveld & Sebastian Lehmann & Michael S. Müller & Edna Rödig & Thorsten Wiegand & Andreas Huth, 2018. "Global patterns of tropical forest fragmentation," Nature, Nature, vol. 554(7693), pages 519-522, February.
    3. Hunt, A.G. & Faybishenko, B. & Powell, T.L., 2022. "Test of model of equivalence of tree height growth and transpiration rates in percolation-based phenomenology for root-soil interaction," Ecological Modelling, Elsevier, vol. 465(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isabella Alcañiz & RicardoA. Gutierrez, 2020. "Between the Global Commodity Boom and Subnational State Capacities:Payment for Environmental Services to Fight Deforestation inArgentina," Global Environmental Politics, MIT Press, vol. 20(1), pages 38-59, February.
    2. Martin Martínez-Salvador & Ricardo Mata-Gonzalez & Alfredo Pinedo-Alvarez & Carlos R. Morales-Nieto & Jesús A. Prieto-Amparán & Griselda Vázquez-Quintero & Federico Villarreal-Guerrero, 2019. "A Spatial Forestry Productivity Potential Model for Pinus arizonica Engelm, a Key Timber Species from Northwest Mexico," Sustainability, MDPI, vol. 11(3), pages 1-15, February.
    3. Esther Reith & Elizabeth Gosling & Thomas Knoke & Carola Paul, 2020. "How Much Agroforestry Is Needed to Achieve Multifunctional Landscapes at the Forest Frontier?—Coupling Expert Opinion with Robust Goal Programming," Sustainability, MDPI, vol. 12(15), pages 1-27, July.
    4. Correa, Alicia & Forero, Jorge & Marco Renau, Jorge & Lizarazo, Ivan & Mulligan, Mark & Codato, Daniele, 2023. "Advancing spatial decision-making in a transboundary catchment through multidimensional ecosystem services assessment," Ecosystem Services, Elsevier, vol. 64(C).
    5. Leijten, Floris & Sim, Sarah & King, Henry & Verburg, Peter H., 2021. "Local deforestation spillovers induced by forest moratoria: Evidence from Indonesia," Land Use Policy, Elsevier, vol. 109(C).
    6. Pereira, Alexia Saleme Aona de Paula & dos Santos, Vitor Juste & Alves, Sabrina do Carmo & Amaral e Silva, Arthur & da Silva, Charles Gomes & Calijuri, Maria Lúcia, 2022. "Contribution of rural settlements to the deforestation dynamics in the Legal Amazon," Land Use Policy, Elsevier, vol. 115(C).
    7. Jin Kyoung Noh & Cristian Echeverria & Gabriel Gaona & Janina Kleemann & Hongmi Koo & Christine Fürst & Pablo Cuenca, 2022. "Forest Ecosystem Fragmentation in Ecuador: Challenges for Sustainable Land Use in the Tropical Andean," Land, MDPI, vol. 11(2), pages 1-16, February.
    8. Shiliang Liu & Yingying Chen & Rongjie Yang & Di Li & Yuling Qiu & Kezhu Lu & Xinhao Cao & Qibing Chen, 2024. "Spatiotemporal Dynamics of Constructed Wetland Landscape Patterns during Rapid Urbanization in Chengdu, China," Land, MDPI, vol. 13(6), pages 1-26, June.
    9. Henniger, Hans & Huth, Andreas & Frank, Karin & Bohn, Friedrich J., 2023. "Creating virtual forests around the globe and analysing their state space," Ecological Modelling, Elsevier, vol. 483(C).
    10. Ahanthem Rebika Devi & C. Sudhakar Reddy & Tuisem Shimrah, 2021. "Assessment of forest fragmentation in a traditional shifting agricultural landscape in Senapati District of Manipur, Northeast India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10344-10356, July.
    11. Jun Ma & Jiawei Li & Wanben Wu & Jiajia Liu, 2023. "Global forest fragmentation change from 2000 to 2020," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Simon P. K. Bowring & Wei Li & Florent Mouillot & Thais M. Rosan & Philippe Ciais, 2024. "Road fragment edges enhance wildfire incidence and intensity, while suppressing global burned area," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Lintao Liu & Shouchao Yu & Hengjia Zhang & Yong Wang & Chao Liang, 2023. "Analysis of Land Use Change Drivers and Simulation of Different Future Scenarios: Taking Shanxi Province of China as an Example," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    14. Orozco-Fuentes, S. & Griffiths, G. & Holmes, M.J. & Ettelaie, R. & Smith, J. & Baggaley, A.W. & Parker, N.G., 2019. "Early warning signals in plant disease outbreaks," Ecological Modelling, Elsevier, vol. 393(C), pages 12-19.
    15. Brendan Mackey & Cyril F. Kormos & Heather Keith & William R. Moomaw & Richard A. Houghton & Russell A. Mittermeier & David Hole & Sonia Hugh, 2020. "Understanding the importance of primary tropical forest protection as a mitigation strategy," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 763-787, May.
    16. Brendan Mackey & Cyril F. Kormos & Heather Keith & William R. Moomaw & Richard A. Houghton & Russell A. Mittermeier & David Hole & Sonia Hugh, 0. "Understanding the importance of primary tropical forest protection as a mitigation strategy," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 763-787.
    17. Lucas Theodori Ntukey & Linus Kasian Munishi & Edward Kohi & Anna Christina Treydte, 2022. "Land Use/Cover Change Reduces Elephant Habitat Suitability in the Wami Mbiki–Saadani Wildlife Corridor, Tanzania," Land, MDPI, vol. 11(2), pages 1-20, February.
    18. Guangdong Li & Chuanglin Fang & Yingjie Li & Zhenbo Wang & Siao Sun & Sanwei He & Wei Qi & Chao Bao & Haitao Ma & Yupeng Fan & Yuxue Feng & Xiaoping Liu, 2022. "Global impacts of future urban expansion on terrestrial vertebrate diversity," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Drechsler, Martin & Wätzold, Frank & Grimm, Volker, 2022. "The hitchhiker's guide to generic ecological-economic modelling of land-use-based biodiversity conservation policies," Ecological Modelling, Elsevier, vol. 465(C).
    20. Thomas Knoke & Nick Hanley & Rosa Maria Roman-Cuesta & Ben Groom & Frank Venmans & Carola Paul, 2023. "Trends in tropical forest loss and the social value of emission reductions," Nature Sustainability, Nature, vol. 6(11), pages 1373-1384, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:505:y:2025:i:c:s0304380025000973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.