IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v275y2014icp9-21.html
   My bibliography  Save this article

Development tendency analysis and evaluation of the water ecological carrying capacity in the Siping area of Jilin Province in China based on system dynamics and analytic hierarchy process

Author

Listed:
  • Zhang, Z.
  • Lu, W.X.
  • Zhao, Y.
  • Song, W.B.

Abstract

In this study, system dynamics (SD) and analytic hierarchy process (AHP) were combined to establish an evaluation index system and a system dynamics simulation model for the regional water ecological carrying capacity (WECC). Six proposed planning schemes were used to address the existing water ecological environment problems in the Siping area of Jilin Province, China. The development trends in the WECC during the years 2008–2020 were simulated and evaluated under different planning schemes. The results showed that the water ecological environment in the Siping area would develop into a “poor carrying” state in 2020 with a WECC index of 0.1819 if current social development modes remain unchanged. However, a “good carrying” state with a corresponding WECC index of 0.6652 could be achieved in 2020 if the 5th scheme is applied, which is an integrated planning scheme that combines changes in water-saving, pollution control, water resource exploitation and economic development. The results of this study could provide a scientific basis for the coordinated development of the social economy and the water eco-environment in the Siping area.

Suggested Citation

  • Zhang, Z. & Lu, W.X. & Zhao, Y. & Song, W.B., 2014. "Development tendency analysis and evaluation of the water ecological carrying capacity in the Siping area of Jilin Province in China based on system dynamics and analytic hierarchy process," Ecological Modelling, Elsevier, vol. 275(C), pages 9-21.
  • Handle: RePEc:eee:ecomod:v:275:y:2014:i:c:p:9-21
    DOI: 10.1016/j.ecolmodel.2013.11.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013005838
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.11.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vincenot, Christian Ernest & Giannino, Francesco & Rietkerk, Max & Moriya, Kazuyuki & Mazzoleni, Stefano, 2011. "Theoretical considerations on the combined use of System Dynamics and individual-based modeling in ecology," Ecological Modelling, Elsevier, vol. 222(1), pages 210-218.
    2. Perz, Stephen G. & Muñoz-Carpena, Rafael & Kiker, Gregory & Holt, Robert D., 2013. "Evaluating ecological resilience with global sensitivity and uncertainty analysis," Ecological Modelling, Elsevier, vol. 263(C), pages 174-186.
    3. Feng, Li-Hua & Zhang, Xing-Cai & Luo, Gao-Yuan, 2008. "Application of system dynamics in analyzing the carrying capacity of water resources in Yiwu City, China," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 269-278.
    4. Li Gong & Chunling Jin, 2009. "Fuzzy Comprehensive Evaluation for Carrying Capacity of Regional Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(12), pages 2505-2513, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yujie Wei & Ran Wang & Xin Zhuo & Haoying Feng, 2021. "Research on Comprehensive Evaluation and Coordinated Development of Water Resources Carrying Capacity in Qingjiang River Basin, China," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    2. Junfeng Yang & Kun Lei & Soonthiam Khu & Wei Meng, 2015. "Assessment of Water Resources Carrying Capacity for Sustainable Development Based on a System Dynamics Model: A Case Study of Tieling City, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 885-899, February.
    3. Zhihe Chen & Shuai Wei, 2014. "Application of System Dynamics to Water Security Research," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 287-300, January.
    4. Chen Zeng & Yaolin Liu & Yanfang Liu & Jiameng Hu & Xiaogang Bai & Xiaoyu Yang, 2011. "An Integrated Approach for Assessing Aquatic Ecological Carrying Capacity: A Case Study of Wujin District in the Tai Lake Basin, China," IJERPH, MDPI, vol. 8(1), pages 1-17, January.
    5. Giovanni Improta & Giuseppe Converso & Teresa Murino & Mosè Gallo & Antonietta Perrone & Maria Romano, 2019. "Analytic Hierarchy Process (AHP) in Dynamic Configuration as a Tool for Health Technology Assessment (HTA): The Case of Biosensing Optoelectronics in Oncology," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1533-1550, September.
    6. Xiao-meng Song & Fan-zhe Kong & Che-sheng Zhan, 2011. "Assessment of Water Resources Carrying Capacity in Tianjin City of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 857-873, February.
    7. Xu Luo & Hong S. He & Yu Liang & Jacob S. Fraser & Jialin Li, 2018. "Mitigating the Effects of Climate Change through Harvesting and Planting in Boreal Forests of Northeastern China," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    8. Lewe, J.-H. & Hivin, L.F. & Mavris, D.N., 2014. "A multi-paradigm approach to system dynamics modeling of intercity transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 188-202.
    9. Siyu Gao & Haixiang Guo & Jing Yu, 2021. "Urban Water Inclusive Sustainability: Evidence from 38 Cities in the Yangtze River Economic Belt in China," Sustainability, MDPI, vol. 13(4), pages 1-32, February.
    10. Hongtao Jia & Lei Zhu & Jing Du, 2022. "Fuzzy Comprehensive Evaluation Model of the Farmers’ Sense of Gain in the Provision of Rural Infrastructures: The Case of Tourism-Oriented Rural Areas of China," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    11. Nguyen, Le Khanh Ngan & Howick, Susan & Megiddo, Itamar, 2024. "A framework for conceptualising hybrid system dynamics and agent-based simulation models," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1153-1166.
    12. Grimm, Volker & Berger, Uta, 2016. "Structural realism, emergence, and predictions in next-generation ecological modelling: Synthesis from a special issue," Ecological Modelling, Elsevier, vol. 326(C), pages 177-187.
    13. Yaxian Zhang & Jiangwen Fan & Suizi Wang, 2020. "Assessment of Ecological Carrying Capacity and Ecological Security in China’s Typical Eco-Engineering Areas," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    14. Weilun Feng & Yurui Li, 2021. "Measuring the Ecological Safety Effects of Land Use Transitions Promoted by Land Consolidation Projects: The Case of Yan’an City on the Loess Plateau of China," Land, MDPI, vol. 10(8), pages 1-15, July.
    15. Qianjin Dong & Xu Zhang & Yalin Chen & Debin Fang, 2019. "Dynamic Management of a Water Resources-Socioeconomic-Environmental System Based on Feedbacks Using System Dynamics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2093-2108, April.
    16. Xun-Gui Li & Xia Wei & Nai-Ang Wang & Hong-Yi Cheng, 2011. "Maximum Grade Approach to Surplus Floodwater of Hyperconcentration Rivers in Flood Season and its Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2575-2593, August.
    17. Susanne Moser & Sara Meerow & James Arnott & Emily Jack-Scott, 2019. "The turbulent world of resilience: interpretations and themes for transdisciplinary dialogue," Climatic Change, Springer, vol. 153(1), pages 21-40, March.
    18. Khamdamov, T., 2022. "A brief overview of the evolution of computer simulations in economic research," Journal of the New Economic Association, New Economic Association, vol. 54(2), pages 189-207.
    19. Guangxing Ji & Junchang Huang & Yulong Guo & Dan Yan, 2022. "Quantitatively Calculating the Contribution of Vegetation Variation to Runoff in the Middle Reaches of Yellow River Using an Adjusted Budyko Formula," Land, MDPI, vol. 11(4), pages 1-12, April.
    20. Linyun Zhang & Wei Li & Dalia Streimikiene, 2020. "Measurement of Population Carrying Capacity based on a P–S Model: A Case Study of Zhejiang Province," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 22(54), pages 552-552, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:275:y:2014:i:c:p:9-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.