IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v249y2013icp59-67.html
   My bibliography  Save this article

Using microalgae for combined lipid production and heavy metal removal from leachate

Author

Listed:
  • Richards, R.G.
  • Mullins, B.J.

Abstract

The remediation of leachate from (municipal) landfills and disposal of hypersaline effluent (from desalination plants) are becoming an increasing challenge for many government authorities and practitioners. There is mounting interest in using bioremediation as a means of stripping contaminants from these waste streams and in the potential for lipid production using microalgae. We present a system dynamics approach to exploring the efficacy of using mixed microalgae populations to treat leachate–hypersaline water. This model evaluates the temporal evolution of metal removal and lipid production using four common marine microalgae species: Nanochloropsis, Pavlova lutheri, Tetraselmis chuii and Chaetoceros muelleri. The uptake kinetics of the metals (removal from the leachate) are modelled using basic adsorption kinetics and the model is primarily parameterised from data obtained through an experimental study where two photobioreactors were dosed with composite leachate–hypersaline solution and seeded with the four microalgae species. After a 10-day period, the microalgae population was found to have removed over 95% of the metals from the solution. Microalgae growth was dominated by Nanochloropsis gaditana and C. muelleri, which are the two species with the highest lipid contents. Overall, this study indicated that the use of microalgae-based bioremediation is a viable method for treating waste streams and lipid-production.

Suggested Citation

  • Richards, R.G. & Mullins, B.J., 2013. "Using microalgae for combined lipid production and heavy metal removal from leachate," Ecological Modelling, Elsevier, vol. 249(C), pages 59-67.
  • Handle: RePEc:eee:ecomod:v:249:y:2013:i:c:p:59-67
    DOI: 10.1016/j.ecolmodel.2012.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012003298
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Liling & Luo, Shengjun & Fan, Xiaolei & Yang, Zhiman & Guo, Rongbo, 2011. "Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2," Applied Energy, Elsevier, vol. 88(10), pages 3336-3341.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Dębowski & Marcin Zieliński & Joanna Kazimierowicz & Natalia Kujawska & Szymon Talbierz, 2020. "Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations," Sustainability, MDPI, vol. 12(23), pages 1-37, November.
    2. Khanzada, Zareen T. & Övez, Süleyman, 2017. "Microalgae as a sustainable biological system for improving leachate quality," Energy, Elsevier, vol. 140(P1), pages 757-765.
    3. Maroua El Ouaer & Nejib Turki & Amjad Kallel & Mansour Halaoui & Ismail Trabelsi & Abdennaceur Hassen, 2020. "Recovery of landfill leachate as culture medium for two microalgae: Chlorella sp. and Scenedesmus sp," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(3), pages 2651-2671, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Visva Bharati Barua & Mariya Munir, 2021. "A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment," Energies, MDPI, vol. 14(22), pages 1-20, November.
    2. Zhang, Yanting & Fan, Xiaolei & Yang, Zhiman & Wang, Huanyu & Yang, Dawei & Guo, Rongbo, 2012. "Characterization of H2 photoproduction by a new marine green alga, Platymonas helgolandica var. tsingtaoensis," Applied Energy, Elsevier, vol. 92(C), pages 38-43.
    3. Miyawaki, B. & Mariano, A.B. & Vargas, J.V.C. & Balmant, W. & Defrancheschi, A.C. & Corrêa, D.O. & Santos, B. & Selesu, N.F.H. & Ordonez, J.C. & Kava, V.M., 2021. "Microalgae derived biomass and bioenergy production enhancement through biogas purification and wastewater treatment," Renewable Energy, Elsevier, vol. 163(C), pages 1153-1165.
    4. Chen, Guanyi & Zhao, Liu & Qi, Yun, 2015. "Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review," Applied Energy, Elsevier, vol. 137(C), pages 282-291.
    5. Jazzar, Souhir & Olivares-Carrillo, Pilar & Pérez de los Ríos, Antonia & Marzouki, Mohamed Néjib & Acién-Fernández, Francisco Gabriel & Fernández-Sevilla, José María & Molina-Grima, Emilio & Smaali, I, 2015. "Direct supercritical methanolysis of wet and dry unwashed marine microalgae (Nannochloropsis gaditana) to biodiesel," Applied Energy, Elsevier, vol. 148(C), pages 210-219.
    6. Bhatia, Shashi Kant & Bhatia, Ravi Kant & Yang, Yung-Hun, 2017. "An overview of microdiesel — A sustainable future source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1078-1090.
    7. Yang, Qiulian & Li, Haitao & Wang, Dong & Zhang, Xiaochun & Guo, Xiangqian & Pu, Shaochen & Guo, Ruixin & Chen, Jianqiu, 2020. "Utilization of chemical wastewater for CO2 emission reduction: Purified terephthalic acid (PTA) wastewater-mediated culture of microalgae for CO2 bio-capture," Applied Energy, Elsevier, vol. 276(C).
    8. Arudchelvam, Yalini & Nirmalakhandan, Nagamany, 2013. "Energetic optimization of microalgal cultivation in photobioreactors for biodiesel production," Renewable Energy, Elsevier, vol. 56(C), pages 77-84.
    9. Shah, Syed Hasnain & Raja, Iftikhar Ahmed & Rizwan, Muhammad & Rashid, Naim & Mahmood, Qaisar & Shah, Fayyaz Ali & Pervez, Arshid, 2018. "Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 76-92.
    10. Sun, Chi-He & Fu, Qian & Liao, Qiang & Xia, Ao & Huang, Yun & Zhu, Xun & Reungsang, Alissara & Chang, Hai-Xing, 2019. "Life-cycle assessment of biofuel production from microalgae via various bioenergy conversion systems," Energy, Elsevier, vol. 171(C), pages 1033-1045.
    11. Xiaodan Wu & Rongsheng Ruan & Zhenyi Du & Yuhuan Liu, 2012. "Current Status and Prospects of Biodiesel Production from Microalgae," Energies, MDPI, vol. 5(8), pages 1-16, July.
    12. Chen, Yimin & Xu, Changan & Vaidyanathan, Seetharaman, 2020. "Influence of gas management on biochemical conversion of CO2 by microalgae for biofuel production," Applied Energy, Elsevier, vol. 261(C).
    13. Zhang, Lijie & Cheng, Juan & Pei, Haiyan & Pan, Jianqiang & Jiang, Liqun & Hou, Qingjie & Han, Fei, 2018. "Cultivation of microalgae using anaerobically digested effluent from kitchen waste as a nutrient source for biodiesel production," Renewable Energy, Elsevier, vol. 115(C), pages 276-287.
    14. Cai, Ting & Park, Stephen Y. & Racharaks, Ratanachat & Li, Yebo, 2013. "Cultivation of Nannochloropsis salina using anaerobic digestion effluent as a nutrient source for biofuel production," Applied Energy, Elsevier, vol. 108(C), pages 486-492.
    15. Bibi, Riaz & Ahmad, Zulfiqar & Imran, Muhammad & Hussain, Sabir & Ditta, Allah & Mahmood, Shahid & Khalid, Azeem, 2017. "Algal bioethanol production technology: A trend towards sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 976-985.
    16. Alaswad, A. & Dassisti, M. & Prescott, T. & Olabi, A.G., 2015. "Technologies and developments of third generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1446-1460.
    17. Bohutskyi, Pavlo & Chow, Steven & Ketter, Ben & Betenbaugh, Michael J. & Bouwer, Edward J., 2015. "Prospects for methane production and nutrient recycling from lipid extracted residues and whole Nannochloropsis salina using anaerobic digestion," Applied Energy, Elsevier, vol. 154(C), pages 718-731.
    18. Cheah, Wai Yan & Ling, Tau Chuan & Show, Pau Loke & Juan, Joon Ching & Chang, Jo-Shu & Lee, Duu-Jong, 2016. "Cultivation in wastewaters for energy: A microalgae platform," Applied Energy, Elsevier, vol. 179(C), pages 609-625.
    19. Felix, Charles & Ubando, Aristotle & Madrazo, Cynthia & Gue, Ivan Henderson & Sutanto, Sylviana & Tran-Nguyen, Phuong Lan & Go, Alchris Woo & Ju, Yi-Hsu & Culaba, Alvin & Chang, Jo-Shu & Chen, Wei-Hsi, 2019. "Non-catalytic in-situ (trans) esterification of lipids in wet microalgae Chlorella vulgaris under subcritical conditions for the synthesis of fatty acid methyl esters," Applied Energy, Elsevier, vol. 248(C), pages 526-537.
    20. Ghorbani, Afshin & Rahimpour, Hamid Reza & Ghasemi, Younes & Zoughi, Somayeh & Rahimpour, Mohammad Reza, 2014. "A Review of Carbon Capture and Sequestration in Iran: Microalgal Biofixation Potential in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 73-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:249:y:2013:i:c:p:59-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.