IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i8p1347-1353.html
   My bibliography  Save this article

What did Lotka really say? A critical reassessment of the “maximum power principle”

Author

Listed:
  • Sciubba, Enrico

Abstract

This paper presents a critical discussion of the so-called “maximum power principle”, often quoted in studies about the energy balance of living systems and also known in the emergy literature as “maximum em-power principle”. Several authors consider this principle highly relevant and some even proposed it as a “fourth law of thermodynamics”. A critical analysis of the original source, namely Alfred Lotka's 1921–22 papers, conducted both in an historical perspective (the connection between Lotka's writings and the ongoing debate at his time) and in a more modern context, leads to a more detailed and less biased assessment. It turns out that in spite of Lotka's very anticipatory and incredibly sharp vision of the possible interconnections between the second law of thermodynamics and evolutionism, doubts arise about the general applicability of his “maximum power principle”. From an accurate analysis of his writings, it can be concluded that: (a) Lotka explicitly and consistently addressed the “optimal use” of the flow of exergy (available energy), and therefore the quantity defined as “em-power” is an incorrect interpretation of Lotka's constrained maximum power principle; (b) “Lotka's principle” can be reformulated within Ziegler's “maximum entropy production” or Prigogine “minimum entropy generation” paradigm only under two different respective sets of rather stringent additional conditions which Lotka was probably already aware of but never explicitly stated.

Suggested Citation

  • Sciubba, Enrico, 2011. "What did Lotka really say? A critical reassessment of the “maximum power principle”," Ecological Modelling, Elsevier, vol. 222(8), pages 1347-1353.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:8:p:1347-1353
    DOI: 10.1016/j.ecolmodel.2011.02.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011000597
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.02.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sciubba, Enrico & Ulgiati, Sergio, 2005. "Emergy and exergy analyses: Complementary methods or irreducible ideological options?," Energy, Elsevier, vol. 30(10), pages 1953-1988.
    2. Lucia, Umberto, 2007. "Irreversible entropy variation and the problem of the trend to equilibrium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 289-292.
    3. Sciubba, Enrico, 2010. "On the Second-Law inconsistency of Emergy Analysis," Energy, Elsevier, vol. 35(9), pages 3696-3706.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Herrmann-Pillath, Carsten, 2018. "The Case for a New Discipline: Technosphere Science," Ecological Economics, Elsevier, vol. 149(C), pages 212-225.
    2. Kaan Ozgun & Ian Weir & Debra Cushing, 2015. "Optimal Electricity Distribution Framework for Public Space: Assessing Renewable Energy Proposals for Freshkills Park, New York City," Sustainability, MDPI, vol. 7(4), pages 1-21, March.
    3. Lucia, Umberto & Sciubba, Enrico, 2013. "From Lotka to the entropy generation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3634-3639.
    4. Sciubba, Enrico & Zullo, Federico, 2014. "An exergy-based analysis of the co-evolution of different species sharing common resources," Ecological Modelling, Elsevier, vol. 273(C), pages 277-283.
    5. Victor Court, 2018. "Energy Capture, Technological Change, and Economic Growth: An Evolutionary Perspective," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-27, September.
    6. Victor Court, 2019. "An Estimation of Different Minimum Exergy Return Ratios Required for Society," Biophysical Economics and Resource Quality, Springer, vol. 4(3), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucia, Umberto & Sciubba, Enrico, 2013. "From Lotka to the entropy generation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3634-3639.
    2. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2012. "Thermodynamic analysis of human–environment systems: A review focused on industrial ecology," Ecological Modelling, Elsevier, vol. 228(C), pages 76-88.
    3. Patterson, Murray G., 2012. "Are all processes equally efficient from an emergy perspective?," Ecological Modelling, Elsevier, vol. 226(C), pages 77-91.
    4. Mohajeri, Nahid & Gudmundsson, Agust & Scartezzini, Jean-Louis, 2015. "Statistical-thermodynamics modelling of the built environment in relation to urban ecology," Ecological Modelling, Elsevier, vol. 307(C), pages 32-47.
    5. Marvuglia, Antonino & Benetto, Enrico & Rios, Gordon & Rugani, Benedetto, 2013. "SCALE: Software for CALculating Emergy based on life cycle inventories," Ecological Modelling, Elsevier, vol. 248(C), pages 80-91.
    6. Makhanlall, D. & Liu, L.H. & Zhang, H.C., 2010. "SLA (Second-law analysis) of transient radiative transfer processes," Energy, Elsevier, vol. 35(12), pages 5151-5160.
    7. Nielsen, S.N. & Müller, F., 2009. "Understanding the functional principles of nature—Proposing another type of ecosystem services," Ecological Modelling, Elsevier, vol. 220(16), pages 1913-1925.
    8. Sun, Jingchao & Na, Hongming & Yan, Tianyi & Che, Zichang & Qiu, Ziyang & Yuan, Yuxing & Li, Yingnan & Du, Tao & Song, Yanli & Fang, Xin, 2022. "Cost-benefit assessment of manufacturing system using comprehensive value flow analysis," Applied Energy, Elsevier, vol. 310(C).
    9. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    10. Christoph Sejkora & Lisa Kühberger & Fabian Radner & Alexander Trattner & Thomas Kienberger, 2020. "Exergy as Criteria for Efficient Energy Systems—A Spatially Resolved Comparison of the Current Exergy Consumption, the Current Useful Exergy Demand and Renewable Exergy Potential," Energies, MDPI, vol. 13(4), pages 1-51, February.
    11. Rocco, M.V. & Colombo, E. & Sciubba, E., 2014. "Advances in exergy analysis: a novel assessment of the Extended Exergy Accounting method," Applied Energy, Elsevier, vol. 113(C), pages 1405-1420.
    12. Baral, Anil & Bakshi, Bhavik R., 2010. "Emergy analysis using US economic input–output models with applications to life cycles of gasoline and corn ethanol," Ecological Modelling, Elsevier, vol. 221(15), pages 1807-1818.
    13. Lucia, Umberto, 2010. "Maximum entropy generation and κ-exponential model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4558-4563.
    14. Bastianoni, S. & Facchini, A. & Susani, L. & Tiezzi, E., 2007. "Emergy as a function of exergy," Energy, Elsevier, vol. 32(7), pages 1158-1162.
    15. Almeida, C.M.V.B. & Borges, D. & Bonilla, S.H. & Giannetti, B.F., 2010. "Identifying improvements in water management of bus-washing stations in Brazil," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 821-831.
    16. Jamali-Zghal, N. & Le Corre, O. & Lacarrière, B., 2014. "Mineral resource assessment: Compliance between emergy and exergy respecting Odum's hierarchy concept," Ecological Modelling, Elsevier, vol. 272(C), pages 208-219.
    17. Lucia, Umberto, 2009. "Irreversibility, entropy and incomplete information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4025-4033.
    18. Zhang, Xiao Hong & Deng, ShiHuai & Jiang, WenJu & Zhang, YanZong & Peng, Hong & Li, Li & Yang, Gang & Li, YuanWei, 2010. "Emergy evaluation of the sustainability of two industrial systems based on wastes exchanges," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 182-195.
    19. Hoang, Viet-Ngu & Rao, D.S. Prasada, 2010. "Measuring and decomposing sustainable efficiency in agricultural production: A cumulative exergy balance approach," Ecological Economics, Elsevier, vol. 69(9), pages 1765-1776, July.
    20. Ting Chang & Degang Yang & Jinwei Huo & Fuqiang Xia & Zhiping Zhang, 2018. "Evaluation of Oasis Sustainability Based on Emergy and Decomposition Analysis," Sustainability, MDPI, vol. 10(6), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:8:p:1347-1353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.