IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v221y2010i3p527-539.html
   My bibliography  Save this article

An ecosystem model for estimating potential shellfish culture production in sheltered coastal waters

Author

Listed:
  • Ren, Jeffrey S.
  • Ross, Alex H.
  • Hadfield, Mark G.
  • Hayden, Barbara J.

Abstract

A generic ecosystem model has been developed for estimating the potential production of shellfish culture and the effect of that cultivation on the pelagic ecosystem in sheltered coastal waters. The model describes the dynamics of a simple food web, nutrient cycling and growth of shellfish. The design of the model is closely tied to the temporal and spatial scales that are important in determining the sustainable production level for a particular embayment. The pelagic ecosystem, mussel energetics, population dynamics and hydrodynamics are coupled to allow fully dynamic predictions of the effect of the shellfish density. When applied to Beatrix Bay, an intensive culture embayment in the Pelorus Sound of New Zealand, the model successfully captured main features of the observed system behaviour. The hydrodynamic regime of the bay controls mussel growth and production. Although high fluxes of water into the bay suppress nutrient and carbon cycling signals in the system, the model simulations demonstrated that the mussel cultivation can have considerable effects on the ecosystem of the bay including food depletion and nutrient cycling. One of the most obvious effects is nutrient enhancement through mussel excretion at low cultivation densities, which promotes primary production particularly during the N-limitation period in summer. The sensitivity analysis identified uncertainty in some parameters and indicated areas for which experimental studies could lead to model improvement. The modelling exercise has established a primary predictive tool for managing mussel aquaculture of a coastal embayment to estimate relationships between the stock level and the growth rate of mussels, and the potentially achievable harvest and stocking density.

Suggested Citation

  • Ren, Jeffrey S. & Ross, Alex H. & Hadfield, Mark G. & Hayden, Barbara J., 2010. "An ecosystem model for estimating potential shellfish culture production in sheltered coastal waters," Ecological Modelling, Elsevier, vol. 221(3), pages 527-539.
  • Handle: RePEc:eee:ecomod:v:221:y:2010:i:3:p:527-539
    DOI: 10.1016/j.ecolmodel.2009.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380009007492
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2009.11.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosamond L. Naylor & Rebecca J. Goldburg & Jurgenne H. Primavera & Nils Kautsky & Malcolm C. M. Beveridge & Jason Clay & Carl Folke & Jane Lubchenco & Harold Mooney & Max Troell, 2000. "Effect of aquaculture on world fish supplies," Nature, Nature, vol. 405(6790), pages 1017-1024, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Forget, Nathalie L. & Duplisea, Daniel E. & Sardenne, Fany & McKindsey, Christopher W., 2020. "Using qualitative network models to assess the influence of mussel culture on ecosystem dynamics," Ecological Modelling, Elsevier, vol. 430(C).
    2. Yu, Shiyang & Song, Da & Fan, Meng & Xie, Congbo, 2023. "Effects of temperature and salinity on growth of Aurelia aurita," Ecological Modelling, Elsevier, vol. 476(C).
    3. Guillaumot, Charlène & Saucède, Thomas & Morley, Simon A. & Augustine, Starrlight & Danis, Bruno & Kooijman, Sebastiaan, 2020. "Can DEB models infer metabolic differences between intertidal and subtidal morphotypes of the Antarctic limpet Nacella concinna (Strebel, 1908)?," Ecological Modelling, Elsevier, vol. 430(C).
    4. Ren, Jeffrey S. & Stenton-Dozey, Jeanie & Plew, David R. & Fang, Jianguang & Gall, Mark, 2012. "An ecosystem model for optimising production in integrated multitrophic aquaculture systems," Ecological Modelling, Elsevier, vol. 246(C), pages 34-46.
    5. Ren, Jeffrey S. & Jin, Xianshi & Yang, Tao & Kooijman, Sebastiaan A.L.M. & Shan, Xiujuan, 2020. "A dynamic energy budget model for small yellow croaker Larimichthys polyactis: Parameterisation and application in its main geographic distribution waters," Ecological Modelling, Elsevier, vol. 427(C).
    6. Zhao, Yunxia & Zhang, Jihong & Lin, Fan & Ren, Jeffrey S. & Sun, Ke & Liu, Yi & Wu, Wenguang & Wang, Wei, 2019. "An ecosystem model for estimating shellfish production carrying capacity in bottom culture systems," Ecological Modelling, Elsevier, vol. 393(C), pages 1-11.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    2. Ariel E. Turcios & Jutta Papenbrock, 2014. "Sustainable Treatment of Aquaculture Effluents—What Can We Learn from the Past for the Future?," Sustainability, MDPI, vol. 6(2), pages 1-21, February.
    3. Juszczyk, Juliusz, 2015. "Światowy rynek łososia hodowlanego – stan i perspektywy," Problems of World Agriculture / Problemy Rolnictwa Światowego, Warsaw University of Life Sciences, vol. 15(30), pages 1-12, September.
    4. repec:mse:cesdoc:13002r is not listed on IDEAS
    5. Asche, Frank & Oglend, Atle, 2016. "The relationship between input-factor and output prices in commodity industries: The case of Norwegian salmon aquaculture," Journal of Commodity Markets, Elsevier, vol. 1(1), pages 35-47.
    6. Zoe G Nichols & Scott Rikard & Sayyed Mohammad Hadi Alavi & William C Walton & Ian A E Butts, 2021. "Regulation of sperm motility in Eastern oyster (Crassostrea virginica) spawning naturally in seawater with low salinity," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-24, March.
    7. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    8. Hughes, Conchúr & King, Jonathan W., 2023. "Habitat suitability modelling for an integrated multi-trophic aquaculture (IMTA) system along Europe's Atlantic coast," Ecological Modelling, Elsevier, vol. 484(C).
    9. József Popp & László Váradi & Emese Békefi & András Péteri & Gergő Gyalog & Zoltán Lakner & Judit Oláh, 2018. "Evolution of Integrated Open Aquaculture Systems in Hungary: Results from a Case Study," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    10. Thaler, S. & Zessner, M. & Weigl, M. & Rechberger, H. & Schilling, K. & Kroiss, H., 2015. "Possible implications of dietary changes on nutrient fluxes, environment and land use in Austria," Agricultural Systems, Elsevier, vol. 136(C), pages 14-29.
    11. Prein, M., 2002. "Integration of aquaculture into crop-animal systems in Asia," Agricultural Systems, Elsevier, vol. 71(1-2), pages 127-146.
    12. Walsh, Michael J. & Gerber Van Doren, Léda & Shete, Nilam & Prakash, Akshay & Salim, Usama, 2018. "Financial tradeoffs of energy and food uses of algal biomass under stochastic conditions," Applied Energy, Elsevier, vol. 210(C), pages 591-603.
    13. Awwal Bamanga & Nnamdi Henry Amaeze & Bader Al-Anzi, 2019. "Comparative Investigation of Total, Recoverable and Bioavailable Fractions of Sediment Metals and Metalloids in the Lagos Harbour and Lagoon System," Sustainability, MDPI, vol. 11(16), pages 1-23, August.
    14. Libralato, Simone & Solidoro, Cosimo, 2008. "A bioenergetic growth model for comparing Sparus aurata's feeding experiments," Ecological Modelling, Elsevier, vol. 214(2), pages 325-337.
    15. Paul Ehrlich, 2011. "A personal view: environmental education—its content and delivery," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 1(1), pages 6-13, March.
    16. Lee, Min-Kyu & Yoo, Seung-Hoon, 2014. "The role of the capture fisheries and aquaculture sectors in the Korean national economy: An input–output analysis," Marine Policy, Elsevier, vol. 44(C), pages 448-456.
    17. Felipe Lourenço & Ricardo Calado & Isabel Medina & Olga M. C. C. Ameixa, 2022. "The Potential Impacts by the Invasion of Insects Reared to Feed Livestock and Pet Animals in Europe and Other Regions: A Critical Review," Sustainability, MDPI, vol. 14(10), pages 1-29, May.
    18. Teresa R. Johnson & Kate Beard & Damian C. Brady & Carrie J. Byron & Caitlin Cleaver & Kevin Duffy & Nicholas Keeney & Melissa Kimble & Molly Miller & Shane Moeykens & Mario Teisl & G. Peter van Walsu, 2019. "A Social-Ecological System Framework for Marine Aquaculture Research," Sustainability, MDPI, vol. 11(9), pages 1-20, April.
    19. Dalton Belmudes & Fernanda S. David & Fernando H. Gonçalves & Wagner C. Valenti, 2021. "Sustainability Analysis of the Production of Early Stages of the Atlantic Forest Lambari ( Deuterodon iguape ) in a Public Hatchery at a Rainforest Conservation Area," Sustainability, MDPI, vol. 13(11), pages 1-12, May.
    20. Mohamed Shainee & Cecilia Haskins & Harald Ellingsen & Bernt J. Leira, 2012. "Designing offshore fish cages using systems engineering principles," Systems Engineering, John Wiley & Sons, vol. 15(4), pages 396-406, December.
    21. Jennifer Jacquet, 2009. "Silent water: a brief examination of the marine fisheries crisis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 11(2), pages 255-263, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:221:y:2010:i:3:p:527-539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.