IDEAS home Printed from
   My bibliography  Save this article

A comparison of the power of some tests for conditional heteroscedasticity


  • Peguin-Feissolle, Anne


This paper compares the power in small samples of different tests for conditional heteroscedasticity. Two new tests, based on neural networks, are proposed: the main interest in them arises from the fact that they do not require the exact specification of the conditional variance under the alternative.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Peguin-Feissolle, Anne, 1999. "A comparison of the power of some tests for conditional heteroscedasticity," Economics Letters, Elsevier, vol. 63(1), pages 5-17, April.
  • Handle: RePEc:eee:ecolet:v:63:y:1999:i:1:p:5-17

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993. "Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests," Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
    2. Bera, Anil K & Higgins, Matthew L, 1993. " ARCH Models: Properties, Estimation and Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 7(4), pages 305-366, December.
    3. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    4. Kamstra, M., 1991. "A Neural Network Test for Heteroskedasticity," Discussion Papers dp91-06, Department of Economics, Simon Fraser University.
    5. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Gilles Dufrénot & Velayoudom Marimoutou & Anne Péguin-Feissolle, 2004. "Modeling the volatility of the US SαP 500 index using an LSTGARCH model," Revue d'économie politique, Dalloz, vol. 114(4), pages 453-465.
    2. Blake, Andrew P. & Kapetanios, George, 2007. "Testing for ARCH in the presence of nonlinearity of unknown form in the conditional mean," Journal of Econometrics, Elsevier, vol. 137(2), pages 472-488, April.
    3. Anne Péguin-Feissolle & Bilel Sanhaji, 2015. "Testing the Constancy of Conditional Correlations in Multivariate GARCH-type Models (Extended Version with Appendix)," Working Papers halshs-01133751, HAL.
    4. Blake, Andrew P. & Kapetanios, George, 2000. "A radial basis function artificial neural network test for ARCH," Economics Letters, Elsevier, vol. 69(1), pages 15-23, October.
    5. Burkhard Raunig, 2003. "Testing for Longer Horizon Predictability of Return Volatility with an Application to the German," Working Papers 86, Oesterreichische Nationalbank (Austrian Central Bank).
    6. Siani, Carole & de Peretti, Christian, 2007. "Analysing the performance of bootstrap neural tests for conditional heteroskedasticity in ARCH-M models," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2442-2460, February.
    7. Carole Siani & Christian de Peretti, 2006. "Bootstrapping Neural tests for conditional heteroskedasticity," Computing in Economics and Finance 2006 301, Society for Computational Economics.
    8. Teresa Aparicio & Inmaculada Villanua, 2001. "The asymptotically efficient version of the information matrix test in binary choice models. A study of size and power," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(2), pages 167-182.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:63:y:1999:i:1:p:5-17. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.