IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v121y2013i3p341-345.html
   My bibliography  Save this article

The computational complexity of random serial dictatorship

Author

Listed:
  • Aziz, Haris
  • Brandt, Felix
  • Brill, Markus

Abstract

In social choice settings with linear preferences, random dictatorship is known to be the only social decision scheme satisfying strategyproofness and ex post efficiency. When also allowing indifferences, random serial dictatorship (RSD) is a well-known generalization of random dictatorship that retains both properties. RSD has been particularly successful in the special domain of random assignment where indifferences are unavoidable. While executing RSD is obviously feasible, we show that computing the resulting probabilities is #P-complete, and thus intractable, both in the context of voting and assignment.

Suggested Citation

  • Aziz, Haris & Brandt, Felix & Brill, Markus, 2013. "The computational complexity of random serial dictatorship," Economics Letters, Elsevier, vol. 121(3), pages 341-345.
  • Handle: RePEc:eee:ecolet:v:121:y:2013:i:3:p:341-345
    DOI: 10.1016/j.econlet.2013.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176513004138
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eric Budish & Estelle Cantillon, 2012. "The Multi-unit Assignment Problem: Theory and Evidence from Course Allocation at Harvard," American Economic Review, American Economic Association, vol. 102(5), pages 2237-2271, August.
    2. Bettina Klaus & Flip Klijn, 2006. "Procedurally fair and stable matching," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 27(2), pages 431-447, January.
    3. Atila Abdulkadiroglu & Tayfun Sonmez, 1998. "Random Serial Dictatorship and the Core from Random Endowments in House Allocation Problems," Econometrica, Econometric Society, vol. 66(3), pages 689-702, May.
    4. Tayfun Sönmez & M. Utku Ünver, 2009. "Matching, Allocation, and Exchange of Discrete Resources," Boston College Working Papers in Economics 717, Boston College Department of Economics.
    5. Bogomolnaia, Anna & Moulin, Herve & Stong, Richard, 2005. "Collective choice under dichotomous preferences," Journal of Economic Theory, Elsevier, vol. 122(2), pages 165-184, June.
    6. Bogomolnaia, Anna & Moulin, Herve, 2001. "A New Solution to the Random Assignment Problem," Journal of Economic Theory, Elsevier, vol. 100(2), pages 295-328, October.
    7. Gibbard, Allan, 1977. "Manipulation of Schemes That Mix Voting with Chance," Econometrica, Econometric Society, vol. 45(3), pages 665-681, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brandl, Florian & Brandt, Felix & Suksompong, Warut, 2016. "The impossibility of extending random dictatorship to weak preferences," Economics Letters, Elsevier, vol. 141(C), pages 44-47.
    2. repec:eee:ecolet:v:160:y:2017:i:c:p:46-49 is not listed on IDEAS
    3. Aziz, Haris & Mestre, Julián, 2014. "Parametrized algorithms for random serial dictatorship," Mathematical Social Sciences, Elsevier, vol. 72(C), pages 1-6.
    4. Aziz, Haris & Brandl, Florian & Brandt, Felix, 2015. "Universal Pareto dominance and welfare for plausible utility functions," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 123-133.
    5. Bettina Klaus & David F. Manlove & Francesca Rossi, 2014. "Matching under Preferences," Cahiers de Recherches Economiques du Département d'Econométrie et d'Economie politique (DEEP) 14.07, Université de Lausanne, Faculté des HEC, DEEP.

    More about this item

    Keywords

    Social choice theory; Random serial dictatorship; Random priority; Computational complexity; Assignment problem;

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:121:y:2013:i:3:p:341-345. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.