IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v66y2023ics1062940823000384.html
   My bibliography  Save this article

The fluctuation correlation between investor sentiment and stock index using VMD-LSTM: Evidence from China stock market

Author

Listed:
  • Gao, Zhenbin
  • Zhang, Jie

Abstract

The impact of the investor sentiment on China’s capital market price volatility is concerned under the perspective of the behavioral finance. Firstly, in terms of the existing methods of establishing the investor sentiment index, the composite investor sentiment index which include six indicators (five objective indicators and a subjective indicator) are obtained. Secondly, VMD-LSTM (Variational Mode Decomposition and Long Short Term Memory) hybrid neural network model is used to decompose and restructure the investor sentiment index and the Shanghai Security Exchange Composite Index (SSEC) into the short-term, medium-term and long-term trend. Each trend is trained to obtain the forecasting results in three different time scales, and then to achieve the final predicting results by superimposing the output of each trend. Furthermore, compare with other prediction methods, the model can indeed improve the overall predicting accuracy. Finally, GARCH model and the co-integration error regression model are used to discuss the fluctuation correlation and VAR (Vector Auto-regression) models are established to analyze the causality between the stock market indices and the investor sentiment index.

Suggested Citation

  • Gao, Zhenbin & Zhang, Jie, 2023. "The fluctuation correlation between investor sentiment and stock index using VMD-LSTM: Evidence from China stock market," The North American Journal of Economics and Finance, Elsevier, vol. 66(C).
  • Handle: RePEc:eee:ecofin:v:66:y:2023:i:c:s1062940823000384
    DOI: 10.1016/j.najef.2023.101915
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940823000384
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2023.101915?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Long, J Bradford, et al, 1990. "Positive Feedback Investment Strategies and Destabilizing Rational Speculation," Journal of Finance, American Finance Association, vol. 45(2), pages 379-395, June.
    2. Hazem Krichene & Mhamed-Ali El-Aroui, 2018. "Artificial stock markets with different maturity levels: simulation of information asymmetry and herd behavior using agent-based and network models," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(3), pages 511-535, October.
    3. Baker, Malcolm & Stein, Jeremy C., 2004. "Market liquidity as a sentiment indicator," Journal of Financial Markets, Elsevier, vol. 7(3), pages 271-299, June.
    4. Sercan Demiralay & Hatice Gaye Gencer, 2014. "Volatility Transmissions between Oil Prices and Emerging Market Sectors: Implications for Portfolio Management and Hedging Strategies," International Journal of Energy Economics and Policy, Econjournals, vol. 4(3), pages 442-447.
    5. Malcolm Baker & Jeffrey Wurgler, 2006. "Investor Sentiment and the Cross‐Section of Stock Returns," Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
    6. Kim, Jikyung (Jeanne) & Dong, Hang & Choi, Jeonghye & Chang, Sue Ryung, 2022. "Sentiment change and negative herding: Evidence from microblogging and news," Journal of Business Research, Elsevier, vol. 142(C), pages 364-376.
    7. Mokni, Khaled & Bouteska, Ahmed & Nakhli, Mohamed Sahbi, 2022. "Investor sentiment and Bitcoin relationship: A quantile-based analysis," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    8. Verma, Rahul & Soydemir, Gökçe, 2009. "The impact of individual and institutional investor sentiment on the market price of risk," The Quarterly Review of Economics and Finance, Elsevier, vol. 49(3), pages 1129-1145, August.
    9. Yang, Chunpeng & Zhou, Liyun, 2016. "Individual stock crowded trades, individual stock investor sentiment and excess returns," The North American Journal of Economics and Finance, Elsevier, vol. 38(C), pages 39-53.
    10. Shi, Yong & Tang, Ye-ran & Long, Wen, 2019. "Sentiment contagion analysis of interacting investors: Evidence from China’s stock forum," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 246-259.
    11. Lee, Charles M C & Shleifer, Andrei & Thaler, Richard H, 1991. "Investor Sentiment and the Closed-End Fund Puzzle," Journal of Finance, American Finance Association, vol. 46(1), pages 75-109, March.
    12. Rai, Anish & Mahata, Ajit & Nurujjaman, Md & Majhi, Sushovan & Debnath, Kanish, 2022. "A sentiment-based modeling and analysis of stock price during the COVID-19: U- and Swoosh-shaped recovery," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    13. Emily J. Huang, 2015. "The role of institutional investors and individual investors in financial markets: Evidence from closed‐end funds," Review of Financial Economics, John Wiley & Sons, vol. 26(1), pages 1-11, September.
    14. Hudson, Robert & Urquhart, Andrew & Zhang, Hanxiong, 2020. "Political uncertainty and sentiment: Evidence from the impact of Brexit on financial markets," European Economic Review, Elsevier, vol. 129(C).
    15. Su, Fei & Wang, Xinyi, 2021. "Investor co-attention and stock return co-movement: Evidence from China’s A-share stock market," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    16. Brown, Gregory W. & Cliff, Michael T., 2004. "Investor sentiment and the near-term stock market," Journal of Empirical Finance, Elsevier, vol. 11(1), pages 1-27, January.
    17. Wang, Hu & Li, Shouwei & Ma, Yuyin & Jiang, Shuyang, 2022. "Does investor sentiment affect fund crashes? Evidence from Chinese open-end funds," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    18. Huang, Emily J., 2015. "The role of institutional investors and individual investors in financial markets: Evidence from closed-end funds," Review of Financial Economics, Elsevier, vol. 26(C), pages 1-11.
    19. Long, Wen & Zhao, Manyi & Tang, Yeran, 2021. "Can the Chinese volatility index reflect investor sentiment?," International Review of Financial Analysis, Elsevier, vol. 73(C).
    20. Araújo, Tanya & Eleutério, Samuel & Louçã, Francisco, 2018. "Do sentiments influence market dynamics? A reconstruction of the Brazilian stock market and its mood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1139-1149.
    21. Fang, Libing & Yu, Honghai & Huang, Yingbo, 2018. "The role of investor sentiment in the long-term correlation between U.S. stock and bond markets," International Review of Economics & Finance, Elsevier, vol. 58(C), pages 127-139.
    22. Chang, Chih-Hsiang & Lin, Shih-Jia, 2015. "The effects of national culture and behavioral pitfalls on investors' decision-making: Herding behavior in international stock markets," International Review of Economics & Finance, Elsevier, vol. 37(C), pages 380-392.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Yi & Tang, Zhenpeng & Chen, Ying, 2024. "Can real-time investor sentiment help predict the high-frequency stock returns? Evidence from a mixed-frequency-rolling decomposition forecasting method," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    2. Yang, Qu & Yu, Yuanyuan & Dai, Dongsheng & He, Qian & Lin, Yu, 2024. "Can hybrid model improve the forecasting performance of stock price index amid COVID-19? Contextual evidence from the MEEMD-LSTM-MLP approach," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
    3. Lee, Geul & Ryu, Doojin, 2024. "Investor sentiment or information content? A simple test for investor sentiment proxies," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumari, Jyoti, 2019. "Investor sentiment and stock market liquidity: Evidence from an emerging economy," Journal of Behavioral and Experimental Finance, Elsevier, vol. 23(C), pages 166-180.
    2. Seok, Sangik & Cho, Hoon & Ryu, Doojin, 2024. "Dual effects of investor sentiment and uncertainty in financial markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 300-315.
    3. Han, Xing & Li, Youwei, 2017. "Can investor sentiment be a momentum time-series predictor? Evidence from China," Journal of Empirical Finance, Elsevier, vol. 42(C), pages 212-239.
    4. Sofiane Aboura, 2016. "Individual investors and stock returns," Journal of Asset Management, Palgrave Macmillan, vol. 17(7), pages 477-485, December.
    5. Gao, Bin & Liu, Xihua, 2020. "Intraday sentiment and market returns," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 48-62.
    6. Wang, Ruina & Li, Jinfang, 2021. "The influence and predictive powers of mixed-frequency individual stock sentiment on stock returns," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    7. Mariem Talbi & Amel Ben Halima, 2019. "Global Contagion of Investor Sentiment during the US Subprime Crisis: The Case of the USA and the Region of Latin America," International Journal of Economics and Financial Issues, Econjournals, vol. 9(3), pages 163-174.
    8. Rakovská, Zuzana, 2021. "Composite survey sentiment as a predictor of future market returns: Evidence for German equity indices," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 473-495.
    9. Seok, Sang Ik & Cho, Hoon & Ryu, Doojin, 2019. "Firm-specific investor sentiment and daily stock returns," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    10. Kanzari, Dalel & Nakhli, Mohamed Sahbi & Gaies, Brahim & Sahut, Jean-Michel, 2023. "Predicting macro-financial instability – How relevant is sentiment? Evidence from long short-term memory networks," Research in International Business and Finance, Elsevier, vol. 65(C).
    11. Pedro Manuel Nogueira Reis & Carlos Pinho, 2021. "A Reappraisal of the Causal Relationship between Sentiment Proxies and Stock Returns," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 22(4), pages 420-442, October.
    12. Haritha P H & Abdul Rishad, 2020. "An empirical examination of investor sentiment and stock market volatility: evidence from India," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-15, December.
    13. Ung, Sze Nie & Gebka, Bartosz & Anderson, Robert D.J., 2023. "Is sentiment the solution to the risk–return puzzle? A (cautionary) note," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    14. Yuan Li, 2022. "Mood Beta, Sentiment and Stock Returns in China," SAGE Open, , vol. 12(1), pages 21582440221, February.
    15. Muhammad Zia Ur Rehman & Zain ul Abidin & Faisal Rizwan & Zaheer Abbas & Sajjad Ahmad Baig, 2017. "How investor sentiments spillover from developed countries to developing countries?," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1309096-130, January.
    16. Dhasmana, Samriddhi & Ghosh, Sajal & Kanjilal, Kakali, 2023. "Does investor sentiment influence ESG stock performance? Evidence from India," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    17. Hou, Yang & Meng, Jiayin, 2018. "The momentum effect in the Chinese market and its relationship with the simultaneous and the lagged investor sentiment," MPRA Paper 94838, University Library of Munich, Germany.
    18. Shen, Yiran & Liu, Chang & Sun, Xiaolei & Guo, Kun, 2023. "Investor sentiment and the Chinese new energy stock market: A risk–return perspective," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 395-408.
    19. Liang, Chao & Xu, Yongan & Wang, Jianqiong & Yang, Mo, 2022. "Whether dimensionality reduction techniques can improve the ability of sentiment proxies to predict stock market returns," International Review of Financial Analysis, Elsevier, vol. 82(C).
    20. Yang, Chunpeng & Zhang, Rengui, 2013. "Dynamic asset pricing model with heterogeneous sentiments," Economic Modelling, Elsevier, vol. 33(C), pages 248-253.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:66:y:2023:i:c:s1062940823000384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.