IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v31y2013icp12-17.html
   My bibliography  Save this article

Fuzzy possibilistic portfolio selection model with VaR constraint and risk-free investment

Author

Listed:
  • Li, Ting
  • Zhang, Weiguo
  • Xu, Weijun

Abstract

We propose a possibilistic portfolio model with VaR constraint and risk-free investment based on the possibilistic mean and variance, while assuming that the expected rate of returns is a fuzzy number. The model shows more clearly that, in the financial market affected by several non-probabilistic factors, risk-averse investors wish not only to reach the expected rate of returns in their actual investment, but also to assure that the maximum of their possible future risk is lower than an expected loss. Under the condition that the expected rate of returns is a normal distribution fuzzy variable, we proposed a theorem as the solution, and derive a crisp equivalent form of the possibilistic portfolio under constraints of VaR and risk-free investment. This model is an expansion of the fuzzy possibilistic mean–variance model by Zhang (2007). Finally, an empirical study is carried out using the data concerning some stocks of various industries listed at the Shanghai Stock Exchange. A conclusion is reached that the investors are able to choose a portfolio more suitable to them under the VaR constraint.

Suggested Citation

  • Li, Ting & Zhang, Weiguo & Xu, Weijun, 2013. "Fuzzy possibilistic portfolio selection model with VaR constraint and risk-free investment," Economic Modelling, Elsevier, vol. 31(C), pages 12-17.
  • Handle: RePEc:eee:ecmode:v:31:y:2013:i:c:p:12-17
    DOI: 10.1016/j.econmod.2012.11.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999312003884
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2012.11.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gordon J. Alexander & Alexandre M. Baptista, 2004. "A Comparison of VaR and CVaR Constraints on Portfolio Selection with the Mean-Variance Model," Management Science, INFORMS, vol. 50(9), pages 1261-1273, September.
    2. Zhang, Wei-Guo & Xiao, Wei-Lin & Xu, Wei-Jun, 2010. "A possibilistic portfolio adjusting model with new added assets," Economic Modelling, Elsevier, vol. 27(1), pages 208-213, January.
    3. Jong-Shi Pang, 1980. "A New and Efficient Algorithm for a Class of Portfolio Selection Problems," Operations Research, INFORMS, vol. 28(3-part-ii), pages 754-767, June.
    4. Alexander, Gordon J. & Baptista, Alexandre M., 2002. "Economic implications of using a mean-VaR model for portfolio selection: A comparison with mean-variance analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 26(7-8), pages 1159-1193, July.
    5. Gourieroux, C. & Laurent, J. P. & Scaillet, O., 2000. "Sensitivity analysis of Values at Risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 225-245, November.
    6. Leon, T. & Liern, V. & Vercher, E., 2002. "Viability of infeasible portfolio selection problems: A fuzzy approach," European Journal of Operational Research, Elsevier, vol. 139(1), pages 178-189, May.
    7. Elliott, Robert J. & Siu, Tak Kuen & Badescu, Alex, 2010. "On mean-variance portfolio selection under a hidden Markovian regime-switching model," Economic Modelling, Elsevier, vol. 27(3), pages 678-686, May.
    8. Longin, Francois M., 2000. "From value at risk to stress testing: The extreme value approach," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1097-1130, July.
    9. Srichander Ramaswamy, 1998. "Portfolio selection using fuzzy decision theory," BIS Working Papers 59, Bank for International Settlements.
    10. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    11. Andre F. Perold, 1984. "Large-Scale Portfolio Optimization," Management Science, INFORMS, vol. 30(10), pages 1143-1160, October.
    12. Merton, Robert C., 1972. "An Analytic Derivation of the Efficient Portfolio Frontier," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(4), pages 1851-1872, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massacci, Daniele, 2014. "A two-regime threshold model with conditional skewed Student t distributions for stock returns," Economic Modelling, Elsevier, vol. 43(C), pages 9-20.
    2. Wulan Anggraeni & Sudradjat Supian & Sukono & Nurfadhlina Abdul Halim, 2023. "Catastrophe Bond Diversification Strategy Using Probabilistic–Possibilistic Bijective Transformation and Credibility Measures in Fuzzy Environment," Mathematics, MDPI, vol. 11(16), pages 1-30, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsaur, Ruey-Chyn, 2013. "Fuzzy portfolio model with different investor risk attitudes," European Journal of Operational Research, Elsevier, vol. 227(2), pages 385-390.
    2. Ruey-Chyn Tsaur, 2015. "Fuzzy portfolio model with fuzzy-input return rates and fuzzy-output proportions," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(3), pages 438-450, February.
    3. Zhang, Wei-Guo & Zhang, Xi-Li & Xiao, Wei-Lin, 2009. "Portfolio selection under possibilistic mean-variance utility and a SMO algorithm," European Journal of Operational Research, Elsevier, vol. 197(2), pages 693-700, September.
    4. Zhang, Wei-Guo & Xiao, Wei-Lin & Xu, Wei-Jun, 2010. "A possibilistic portfolio adjusting model with new added assets," Economic Modelling, Elsevier, vol. 27(1), pages 208-213, January.
    5. Li, Ting & Zhang, Weiguo & Xu, Weijun, 2015. "A fuzzy portfolio selection model with background risk," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 505-513.
    6. Bodnar Taras & Schmid Wolfgang & Zabolotskyy Tara, 2012. "Minimum VaR and minimum CVaR optimal portfolios: Estimators, confidence regions, and tests," Statistics & Risk Modeling, De Gruyter, vol. 29(4), pages 281-314, November.
    7. Taras Bodnar & Taras Zabolotskyy, 2017. "How risky is the optimal portfolio which maximizes the Sharpe ratio?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(1), pages 1-28, January.
    8. Alexander, Gordon J. & Baptista, Alexandre M., 2009. "Stress testing by financial intermediaries: Implications for portfolio selection and asset pricing," Journal of Financial Intermediation, Elsevier, vol. 18(1), pages 65-92, January.
    9. Bodnar, Taras & Lindholm, Mathias & Niklasson, Vilhelm & Thorsén, Erik, 2022. "Bayesian portfolio selection using VaR and CVaR," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    10. Dias, Alexandra, 2016. "The economic value of controlling for large losses in portfolio selection," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 81-91.
    11. Chiu, Wan-Yi, 2022. "Another look at portfolio optimization with mental accounts," Applied Mathematics and Computation, Elsevier, vol. 419(C).
    12. Brandtner, Mario, 2013. "Conditional Value-at-Risk, spectral risk measures and (non-)diversification in portfolio selection problems – A comparison with mean–variance analysis," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5526-5537.
    13. Zhang, Xili & Zhang, Weiguo & Xiao, Weilin, 2013. "Multi-period portfolio optimization under possibility measures," Economic Modelling, Elsevier, vol. 35(C), pages 401-408.
    14. Taras Bodnar & Yarema Okhrin & Valdemar Vitlinskyy & Taras Zabolotskyy, 2018. "Determination and estimation of risk aversion coefficients," Computational Management Science, Springer, vol. 15(2), pages 297-317, June.
    15. Chen, Wei & Zhang, Wei-Guo, 2010. "The admissible portfolio selection problem with transaction costs and an improved PSO algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2070-2076.
    16. Righi, Marcelo Brutti & Borenstein, Denis, 2018. "A simulation comparison of risk measures for portfolio optimization," Finance Research Letters, Elsevier, vol. 24(C), pages 105-112.
    17. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    18. Taras Bodnar & Mathias Lindholm & Erik Thorsén & Joanna Tyrcha, 2021. "Quantile-based optimal portfolio selection," Computational Management Science, Springer, vol. 18(3), pages 299-324, July.
    19. Songjiao Chen & William W. Wilson & Ryan Larsen & Bruce Dahl, 2015. "Investing in Agriculture as an Asset Class," Agribusiness, John Wiley & Sons, Ltd., vol. 31(3), pages 353-371, June.
    20. P. Kumar & Jyotirmayee Behera & A. K. Bhurjee, 2022. "Solving mean-VaR portfolio selection model with interval-typed random parameter using interval analysis," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 41-77, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:31:y:2013:i:c:p:12-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.