Classification of multiple time signals using localized frequency characteristics applied to industrial process monitoring
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2015.07.009
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Ramsey James B. & Lampart Camille, 1998. "The Decomposition of Economic Relationships by Time Scale Using Wavelets: Expenditure and Income," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(1), pages 1-22, April.
- J. Sanderson & P. Fryzlewicz & M. W. Jones, 2010. "Estimating linear dependence between nonstationary time series using the locally stationary wavelet model," Biometrika, Biometrika Trust, vol. 97(2), pages 435-446.
- Haeran Cho & Piotr Fryzlewicz, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 475-507, March.
- Cho, Haeran & Fryzlewicz, Piotr, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," LSE Research Online Documents on Economics 57147, London School of Economics and Political Science, LSE Library.
- G. P. Nason & R. Von Sachs & G. Kroisandt, 2000. "Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 271-292.
- Maharaj, Elizabeth Ann & Alonso, Andrés M., 2014. "Discriminant analysis of multivariate time series: Application to diagnosis based on ECG signals," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 67-87.
- Sanderson, Jean & Fryzlewicz, Piotr & Jones, M. W., 2010. "Estimating linear dependence between nonstationary time series using the locally stationary wavelet model," LSE Research Online Documents on Economics 29141, London School of Economics and Political Science, LSE Library.
- Ramsey, James B. & Lampart, Camille, 1998. "Decomposition Of Economic Relationships By Timescale Using Wavelets," Macroeconomic Dynamics, Cambridge University Press, vol. 2(1), pages 49-71, March.
- Antonis A. Michis, 2009. "Forecasting brand sales with wavelet decompositions of related causal series," International Journal of Business Forecasting and Marketing Intelligence, Inderscience Enterprises Ltd, vol. 1(2), pages 95-110.
- Maharaj, Elizabeth A. & Alonso, Andres M., 2007. "Discrimination of locally stationary time series using wavelets," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 879-895, October.
- Fryzlewicz, Piotr & Ombao, Hernando, 2009. "Consistent Classification of Nonstationary Time Series Using Stochastic Wavelet Representations," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 299-312.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Aykroyd, Robert G. & Leiva, Víctor & Ruggeri, Fabrizio, 2019. "Recent developments of control charts, identification of big data sources and future trends of current research," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 221-232.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Embleton, Jonathan & Knight, Marina I. & Ombao, Hernando, 2022. "Wavelet testing for a replicate-effect within an ordered multiple-trial experiment," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
- Hossein Hassani & Mohammad Reza Yeganegi & Emmanuel Sirimal Silva, 2018. "A New Signal Processing Approach for Discrimination of EEG Recordings," Stats, MDPI, vol. 1(1), pages 1-14, November.
- Mark Fiecas & Hernando Ombao, 2016. "Modeling the Evolution of Dynamic Brain Processes During an Associative Learning Experiment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1440-1453, October.
- Euan T. McGonigle & Rebecca Killick & Matthew A. Nunes, 2022. "Trend locally stationary wavelet processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(6), pages 895-917, November.
- Barigozzi, Matteo & Cho, Haeran & Fryzlewicz, Piotr, 2018.
"Simultaneous multiple change-point and factor analysis for high-dimensional time series,"
Journal of Econometrics, Elsevier, vol. 206(1), pages 187-225.
- Barigozzi, Matteo & Cho, Haeran & Fryzlewicz, Piotr, 2018. "Simultaneous multiple change-point and factor analysis for high-dimensional time series," LSE Research Online Documents on Economics 88110, London School of Economics and Political Science, LSE Library.
- Milan Bašta, 2014. "Simulating Bivariate Stationary Processes with Scale-Specific Characteristics," Acta Oeconomica Pragensia, Prague University of Economics and Business, vol. 2014(1), pages 3-26.
- Guy Nason, 2013. "A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 879-904, November.
- Wang, Jiangyan & Cao, Guanqun & Wang, Li & Yang, Lijian, 2020. "Simultaneous confidence band for stationary covariance function of dense functional data," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
- von Sachs, Rainer, 2019. "Spectral Analysis of Multivariate Time Series," LIDAM Discussion Papers ISBA 2019008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Cho, Haeran & Fryzlewicz, Piotr, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," LSE Research Online Documents on Economics 57147, London School of Economics and Political Science, LSE Library.
- Michis Antonis A, 2009. "Regression Analysis of Marketing Time Series: A Wavelet Approach with Some Frequency Domain Insights," Review of Marketing Science, De Gruyter, vol. 7(1), pages 1-43, July.
- el Alaoui, Abdelkader O. & Dewandaru, Ginanjar & Azhar Rosly, Saiful & Masih, Mansur, 2015. "Linkages and co-movement between international stock market returns: Case of Dow Jones Islamic Dubai Financial Market index," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 36(C), pages 53-70.
- Stanislaus Maier-Paape & Andreas Platen, 2016. "Lead–Lag Relationship Using a Stop-and-Reverse-MinMax Process," Risks, MDPI, vol. 4(3), pages 1-20, July.
- Bašta, Milan & Helman, Karel, 2013. "Scale-specific importance of weather variables for explanation of variations of electricity consumption: The case of Prague, Czech Republic," Energy Economics, Elsevier, vol. 40(C), pages 503-514.
- Gallegati, Marco & Ramsey, James B., 2014. "The forward looking information content of equity and bond markets for aggregate investments," Journal of Economics and Business, Elsevier, vol. 75(C), pages 1-24.
- Fernandez, Viviana, 2007. "A postcard from the past: The behavior of U.S. stock markets during 1871–1938," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 267-282.
- Oleksandr Gromenko & Piotr Kokoszka & Matthew Reimherr, 2017. "Detection of change in the spatiotemporal mean function," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 29-50, January.
- Wen-Yi Chen, 2016. "Health progress and economic growth in the USA: the continuous wavelet analysis," Empirical Economics, Springer, vol. 50(3), pages 831-855, May.
- Simon Bussy & Mokhtar Z. Alaya & Anne‐Sophie Jannot & Agathe Guilloux, 2022. "Binacox: automatic cut‐point detection in high‐dimensional Cox model with applications in genetics," Biometrics, The International Biometric Society, vol. 78(4), pages 1414-1426, December.
- Faria, Gonçalo & Verona, Fabio, 2018.
"Forecasting stock market returns by summing the frequency-decomposed parts,"
Journal of Empirical Finance, Elsevier, vol. 45(C), pages 228-242.
- Faria, Gonçalo & Verona, Fabio, 2016. "Forecasting stock market returns by summing the frequency-decomposed parts," Bank of Finland Research Discussion Papers 29/2016, Bank of Finland.
- Gonçalo Faria & Fabio Verona, 2017. "Forecasting stock market returns by summing the frequency-decomposed parts," CEF.UP Working Papers 1702, Universidade do Porto, Faculdade de Economia do Porto.
- Gonçalo Faria & Fabio Verona, 2016. "Forecasting stock market returns by summing the frequency-decomposed parts," Working Papers de Economia (Economics Working Papers) 05, Católica Porto Business School, Universidade Católica Portuguesa.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:94:y:2016:i:c:p:351-362. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/csdana/v94y2016icp351-362.html