IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v78y2014icp159-175.html
   My bibliography  Save this article

Small area prediction for a unit-level lognormal model

Author

Listed:
  • Berg, Emily
  • Chandra, Hukum

Abstract

Many variables of interest in business and agricultural surveys have skewed distributions. Small area estimation methods are investigated under an assumption that the lognormal model is a reasonable approximation for the distribution of the response given covariates. Closed form expressions for an empirical Bayes (EB) predictor and for the associated mean squared error estimator are derived. In simulation studies, the EB predictors are more efficient than model-based direct and synthetic estimators previously proposed for lognormal data. Also, coverage of confidence intervals for the lognormal predictions approximate the nominal coverage. The simulations also demonstrate that the suggested predictor is robust to departures from the assumptions of the lognormal model. The methodology is successfully applied to estimate erosion rates for hydrologic units using data from the Conservation Effects Assessment Project.

Suggested Citation

  • Berg, Emily & Chandra, Hukum, 2014. "Small area prediction for a unit-level lognormal model," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 159-175.
  • Handle: RePEc:eee:csdana:v:78:y:2014:i:c:p:159-175
    DOI: 10.1016/j.csda.2014.03.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731400084X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2014.03.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malay Ghosh, 2004. "Small-area estimation based on natural exponential family quadratic variance function models and survey weights," Biometrika, Biometrika Trust, vol. 91(1), pages 95-112, March.
    2. Ray Chambers & Nikos Tzavidis, 2006. "M-quantile models for small area estimation," Biometrika, Biometrika Trust, vol. 93(2), pages 255-268, June.
    3. Getachew Dagne, 2001. "Bayesian transformed models for small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(2), pages 375-391, December.
    4. Malay Ghosh & Tapabrata Maiti & Ananya Roy, 2008. "Influence functions and robust Bayes and empirical Bayes small area estimation," Biometrika, Biometrika Trust, vol. 95(3), pages 573-585.
    5. Soumendra N. Lahiri & Tapabrata Maiti & Myron Katzoff & Van Parsons, 2007. "Resampling-based empirical prediction: an application to small area estimation," Biometrika, Biometrika Trust, vol. 94(2), pages 469-485.
    6. Forough Karlberg, 2000. "Population total prediction under a lognormal superpopulation model," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3-4), pages 53-80.
    7. Jiming Jiang & P. Lahiri, 2006. "Mixed model prediction and small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-96, June.
    8. Eric V. Slud & Tapabrata Maiti, 2006. "Mean‐squared error estimation in transformed Fay–Herriot models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 239-257, April.
    9. Wang, Junyuan & Fuller, Wayne A., 2003. "The Mean Squared Error of Small Area Predictors Constructed With Estimated Area Variances," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 716-723, January.
    10. Jiang, Jiming & Nguyen, Thuan & Rao, J. Sunil, 2011. "Best Predictive Small Area Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 732-745.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chwila Adam & Żądło Tomasz, 2020. "On the choice of the number of Monte Carlo iterations and bootstrap replicates in Empirical Best Prediction," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 35-60, June.
    2. Adam Chwila & Tomasz Żądło, 2020. "On the choice of the number of Monte Carlo iterations and bootstrap replicates in Empirical Best Prediction," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 35-60, June.
    3. J. N. K. Rao, 2015. "Inferential issues in model-based small area estimation: some new developments," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 491-510, December.
    4. Dian Handayani & Henk Folmer & Anang Kurnia & Khairil Anwar Notodiputro, 2018. "The spatial empirical Bayes predictor of the small area mean for a lognormal variable of interest and spatially correlated random effects," Empirical Economics, Springer, vol. 55(1), pages 147-167, August.
    5. Zimmermann Thomas & Münnich Ralf Thomas, 2018. "Small Area Estimation with a Lognormal Mixed Model under Informative Sampling," Journal of Official Statistics, Sciendo, vol. 34(2), pages 523-542, June.
    6. Rao J. N. K., 2015. "Inferential Issues in Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 491-510, December.
    7. J. N. K. Rao, 2015. "Inferential Issues In Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 491-510, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. N. K. Rao, 2015. "Inferential issues in model-based small area estimation: some new developments," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 491-510, December.
    2. Karlberg Forough, 2015. "Small Area Estimation for Skewed Data in the Presence of Zeroes," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 541-562, December.
    3. Forough Karlberg, 2015. "Small Area Estimation For Skewed Data In The Presence Of Zeroes," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 541-562, December.
    4. J. N. K. Rao, 2015. "Inferential Issues In Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 491-510, December.
    5. Rao J. N. K., 2015. "Inferential Issues in Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 491-510, December.
    6. Forough Karlberg, 2015. "Small area estimation for skewed data in the presence of zeroes," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 541-562, December.
    7. Yoshimori, Masayo & Lahiri, Partha, 2014. "A new adjusted maximum likelihood method for the Fay–Herriot small area model," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 281-294.
    8. Malay Ghosh, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 1-22, August.
    9. Ghosh Malay, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 1-22, August.
    10. Rong Zhu & Guohua Zou & Hua Liang & Lixing Zhu, 2016. "Penalized Weighted Least Squares to Small Area Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 736-756, September.
    11. Dian Handayani & Henk Folmer & Anang Kurnia & Khairil Anwar Notodiputro, 2018. "The spatial empirical Bayes predictor of the small area mean for a lognormal variable of interest and spatially correlated random effects," Empirical Economics, Springer, vol. 55(1), pages 147-167, August.
    12. N. Salvati & N. Tzavidis & M. Pratesi & R. Chambers, 2012. "Small area estimation via M-quantile geographically weighted regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 1-28, March.
    13. Molina, Isabel, 2006. "Uncertainty under a multivariate nested-error regression model with logarithmic transformation," DES - Working Papers. Statistics and Econometrics. WS ws066117, Universidad Carlos III de Madrid. Departamento de Estadística.
    14. Miguel Boubeta & María José Lombardía & Domingo Morales, 2016. "Empirical best prediction under area-level Poisson mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 548-569, September.
    15. Enrico Fabrizi & Caterina Giusti & Nicola Salvati & Nikos Tzavidis, 2014. "Mapping average equivalized income using robust small area methods," Papers in Regional Science, Wiley Blackwell, vol. 93(3), pages 685-701, August.
    16. Baldermann, Claudia & Salvati, Nicola & Schmid, Timo, 2016. "Robust small area estimation under spatial non-stationarity," Discussion Papers 2016/5, Free University Berlin, School of Business & Economics.
    17. Chakraborty Adrijo & Datta Gauri Sankar & Mandal Abhyuday, 2016. "A Two-Component Normal Mixture Alternative to the Fay-Herriot Model," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 67-90, March.
    18. Ranjbar, Setareh & Salvati, Nicola & Pacini, Barbara, 2023. "Estimating heterogeneous causal effects in observational studies using small area predictors," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    19. Stefano Marchetti & Caterina Giusti & Nicola Salvati & Monica Pratesi, 2017. "Small area estimation based on M-quantile models in presence of outliers in auxiliary variables," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 531-555, November.
    20. repec:csb:stintr:v:17:y:2016:i:1:p:67-90 is not listed on IDEAS
    21. Ralf Münnich & Jan Burgard & Martin Vogt, 2013. "Small Area-Statistik: Methoden und Anwendungen," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 6(3), pages 149-191, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:78:y:2014:i:c:p:159-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.