IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i1p37-48.html
   My bibliography  Save this article

Robust statistic for the one-way MANOVA

Author

Listed:
  • Todorov, Valentin
  • Filzmoser, Peter

Abstract

The Wilks' Lambda Statistic (likelihood ratio test, LRT) is a commonly used tool for inference about the mean vectors of several multivariate normal populations. However, it is well known that the Wilks' Lambda statistic which is based on the classical normal theory estimates of generalized dispersions, is extremely sensitive to the influence of outliers. A robust multivariate statistic for the one-way MANOVA based on the Minimum Covariance Determinant (MCD) estimator will be presented. The classical Wilks' Lambda statistic is modified into a robust one through substituting the classical estimates by the highly robust and efficient reweighted MCD estimates. Monte Carlo simulations are used to evaluate the performance of the test statistic under various distributions in terms of the simulated significance levels, its power functions and robustness. The power of the robust and classical statistics is compared using size-power curves, for the construction of which no knowledge about the distribution of the statistics is necessary. As a real data application the mean vectors of an ecogeochemical data set are examined.

Suggested Citation

  • Todorov, Valentin & Filzmoser, Peter, 2010. "Robust statistic for the one-way MANOVA," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 37-48, January.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:1:p:37-48
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00309-0
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Davidson, Russell & MacKinnon, James G, 1998. "Graphical Methods for Investigating the Size and Power of Hypothesis Tests," The Manchester School of Economic & Social Studies, University of Manchester, vol. 66(1), pages 1-26, January.
    2. Gelper, Sarah & Croux, Christophe, 2007. "Multivariate out-of-sample tests for Granger causality," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3319-3329, April.
    3. Siani, Carole & de Peretti, Christian, 2007. "Analysing the performance of bootstrap neural tests for conditional heteroskedasticity in ARCH-M models," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2442-2460, February.
    4. Hubert, Mia & Van Driessen, Katrien, 2004. "Fast and robust discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 301-320, March.
    5. Nath, Ravinder & Pavur, Robert, 1985. "A new statistic in the one-way multivariate analysis of variance," Computational Statistics & Data Analysis, Elsevier, vol. 2(4), pages 297-315, February.
    6. Todorov, Valentin & Neykov, Neyko & Neytchev, Plamen, 1994. "Robust two-group discrimination by bounded influence regression. A Monte Carlo simulation," Computational Statistics & Data Analysis, Elsevier, vol. 17(3), pages 289-302, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Todorov, Valentin & Filzmoser, Peter, 2009. "An Object-Oriented Framework for Robust Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i03).
    2. Cerioli, Andrea & Farcomeni, Alessio, 2011. "Error rates for multivariate outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 544-553, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:1:p:37-48. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.