IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v52y2008i7p3570-3582.html
   My bibliography  Save this article

GeD spline estimation of multivariate Archimedean copulas

Author

Listed:
  • Dimitrova, Dimitrina S.
  • Kaishev, Vladimir K.
  • Penev, Spiridon I.

Abstract

A new multivariate Archimedean copula estimation method is proposed in a non-parametric setting. The method uses the so-called Geometrically Designed splines (GeD splines) to represent the cdf of a random variable W[theta], obtained through the probability integral transform of an Archimedean copula with parameter [theta]. Sufficient conditions for the GeD spline estimator to possess the properties of the underlying theoretical cdf, K([theta],t), of W[theta], are given. The latter conditions allow for defining a three-step estimation procedure for solving the resulting non-linear regression problem with linear inequality constraints. In the proposed procedure, finding the number and location of the knots and the coefficients of the unconstrained GeD spline estimator and solving the constraint least-squares optimisation problem are separated. Thus, the resulting spline estimator is used to recover the generator and the related Archimedean copula by solving an ordinary differential equation. The proposed method is truly multivariate, it brings about numerical efficiency and as a result can be applied with large volumes of data and for dimensions d>=2, as illustrated by the numerical examples presented.

Suggested Citation

  • Dimitrova, Dimitrina S. & Kaishev, Vladimir K. & Penev, Spiridon I., 2008. "GeD spline estimation of multivariate Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3570-3582, March.
  • Handle: RePEc:eee:csdana:v:52:y:2008:i:7:p:3570-3582
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00446-X
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joe, Harry, 1990. "Multivariate concordance," Journal of Multivariate Analysis, Elsevier, vol. 35(1), pages 12-30, October.
    2. Chen, Xiaohong & Fan, Yanqin & Tsyrennikov, Viktor, 2006. "Efficient Estimation of Semiparametric Multivariate Copula Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1228-1240, September.
    3. Peter Hall & Natalie Neumeyer, 2006. "Estimating a bivariate density when there are extra data on one or both components," Biometrika, Biometrika Trust, vol. 93(2), pages 439-450, June.
    4. Christian Genest & Jean-François Quessy & Bruno Rémillard, 2006. "Goodness-of-fit Procedures for Copula Models Based on the Probability Integral Transformation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(2), pages 337-366.
    5. Lambert, Philippe, 2007. "Archimedean copula estimation using Bayesian splines smoothing techniques," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6307-6320, August.
    6. Sancetta, Alessio & Satchell, Stephen, 2004. "The Bernstein Copula And Its Applications To Modeling And Approximations Of Multivariate Distributions," Econometric Theory, Cambridge University Press, vol. 20(03), pages 535-562, June.
    7. Genest, Christian & Rivest, Louis-Paul, 2001. "On the multivariate probability integral transformation," Statistics & Probability Letters, Elsevier, vol. 53(4), pages 391-399, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diks, Cees & Panchenko, Valentyn & van Dijk, Dick, 2010. "Out-of-sample comparison of copula specifications in multivariate density forecasts," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1596-1609, September.
    2. Elena Di Bernardino & Didier Rullière, 2016. "A note on upper-patched generators for Archimedean copulas," Working Papers hal-01347869, HAL.
    3. Elena Di Bernardino & Didier Rullière, 2017. "A note on upper-patched generators for Archimedean copulas," Post-Print hal-01347869, HAL.
    4. Hernández-Lobato, José Miguel & Suárez, Alberto, 2011. "Semiparametric bivariate Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2038-2058, June.
    5. Fabrizio Durante & Ostap Okhrin, 2014. "Estimation procedures for exchangeable Marshall copulas with hydrological application," SFB 649 Discussion Papers SFB649DP2014-014, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    6. Elena Di Bernardino & Didier Rullière, 2015. "Estimation of multivariate critical layers: Applications to rainfall data," Post-Print hal-00940089, HAL.
    7. Elena Di Bernardino & Didier Rullière, 2016. "On tail dependence coefficients of transformed multivariate Archimedean copulas," Post-Print hal-00992707, HAL.
    8. Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 223-256, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:7:p:3570-3582. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.