IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v196y2025ics0960077925004333.html
   My bibliography  Save this article

Epidemic surveillance systems and containment strategies in complex networks

Author

Listed:
  • Al-Amery, Amera
  • Herrera, Jose L.
  • Du, Zhanwei
  • Ertem, Melissa Zeynep

Abstract

Healthcare systems encounter significant challenges in detecting and controlling the spread of infectious diseases while preventing healthcare resource overburden. One of these challenges is the implementation of surveillance strategies to locate hot spots of transmission in a population (individuals or groups of individuals) that might have a high impact on transmission dynamics. In the context of contact network epidemiology, it is known that central nodes (nodes with high degree, eigenvector centrality, strength, and betweenness centrality, among others) can be used as sensors to detect the early emergence of outbreaks. This study addresses the question: What is the most informative subset of susceptible individuals for early epidemic detection and control? We evaluate four novel surveillance strategies in complex directed-weighted networks using an SEIR epidemic model across four networks with varying complexities and disease intensities (R0=[min,max]). We observed that the optimal surveillance strategy was highly dependent on both network structure and infectiousness of the disease. Results show that in low-assortativity, strongly connected networks, the dissimilarity strategy best predicts peak transmission, independent of disease intensity and structure. In highly connected, low-density scale-free networks, the ensemble strategy correlates strongly with the epidemic curve and provides early warnings under moderate and high disease intensities.

Suggested Citation

  • Al-Amery, Amera & Herrera, Jose L. & Du, Zhanwei & Ertem, Melissa Zeynep, 2025. "Epidemic surveillance systems and containment strategies in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925004333
    DOI: 10.1016/j.chaos.2025.116420
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925004333
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Guy Shtar & Lior Rokach & Bracha Shapira, 2019. "Detecting drug-drug interactions using artificial neural networks and classic graph similarity measures," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-21, August.
    2. Liu, Jun & Xiong, Qingyu & Shi, Weiren & Shi, Xin & Wang, Kai, 2016. "Evaluating the importance of nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 209-219.
    3. M. Rosa Dalmau Llorca & Elisabet Castro Blanco & Carina Aguilar Martín & Noèlia Carrasco-Querol & Zojaina Hernández Rojas & Alessandra Queiroga Gonçalves & José Fernández-Sáez, 2022. "Early Detection of the Start of the Influenza Epidemic Using Surveillance Systems in Catalonia (PREVIGrip Study)," IJERPH, MDPI, vol. 19(24), pages 1-13, December.
    4. Cecilia de Almeida Marques-Toledo & Carolin Marlen Degener & Livia Vinhal & Giovanini Coelho & Wagner Meira & Claudia Torres Codeço & Mauro Martins Teixeira, 2017. "Dengue prediction by the web: Tweets are a useful tool for estimating and forecasting Dengue at country and city level," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(7), pages 1-20, July.
    5. Jose L Herrera & Ravi Srinivasan & John S Brownstein & Alison P Galvani & Lauren Ancel Meyers, 2016. "Disease Surveillance on Complex Social Networks," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-16, July.
    6. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    7. Alexander Mercier & Samuel Scarpino & Cristopher Moore, 2022. "Effective resistance against pandemics: Mobility network sparsification for high-fidelity epidemic simulations," PLOS Computational Biology, Public Library of Science, vol. 18(11), pages 1-17, November.
    8. Adi Alsyouf & Abdalwali Lutfi & Mohammad Al-Bsheish & Mu’taman Jarrar & Khalid Al-Mugheed & Mohammed Amin Almaiah & Fahad Nasser Alhazmi & Ra’ed Masa’deh & Rami J. Anshasi & Abdallah Ashour, 2022. "Exposure Detection Applications Acceptance: The Case of COVID-19," IJERPH, MDPI, vol. 19(12), pages 1-26, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dean Fantazzini, 2020. "Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 33-54.
    2. Zeynep Ertem & Dorrie Raymond & Lauren Ancel Meyers, 2018. "Optimal multi-source forecasting of seasonal influenza," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-16, September.
    3. Xiaoli Wang & Shuangsheng Wu & C Raina MacIntyre & Hongbin Zhang & Weixian Shi & Xiaomin Peng & Wei Duan & Peng Yang & Yi Zhang & Quanyi Wang, 2015. "Using an Adjusted Serfling Regression Model to Improve the Early Warning at the Arrival of Peak Timing of Influenza in Beijing," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.
    4. Markowitz, Sara & Nesson, Erik & Robinson, Joshua J., 2019. "The effects of employment on influenza rates," Economics & Human Biology, Elsevier, vol. 34(C), pages 286-295.
    5. Bentzen, Jeanet Sinding, 2021. "In crisis, we pray: Religiosity and the COVID-19 pandemic," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 541-583.
    6. Jesse T. Richman & Ryan J. Roberts, 2023. "Assessing Spurious Correlations in Big Search Data," Forecasting, MDPI, vol. 5(1), pages 1-12, February.
    7. repec:plo:pone00:0018687 is not listed on IDEAS
    8. Grechyna, Daryna, 2025. "Raising awareness of climate change: Nature, activists, politicians?," Ecological Economics, Elsevier, vol. 227(C).
    9. Yangkun Huang & Xiaoping Xu & Sini Su, 2021. "Diverging from News Media: An Exploratory Study on the Changing Dynamics between Media and Public Attention on Cancer in China from 2011–2020," IJERPH, MDPI, vol. 18(16), pages 1-13, August.
    10. Vosen, Simeon & Schmidt, Torsten, 2012. "A monthly consumption indicator for Germany based on Internet search query data," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(7), pages 683-687.
    11. Edward L. Glaeser & Scott Duke Kominers & Michael Luca & Nikhil Naik, 2018. "Big Data And Big Cities: The Promises And Limitations Of Improved Measures Of Urban Life," Economic Inquiry, Western Economic Association International, vol. 56(1), pages 114-137, January.
    12. Sean Coogan & Zhixian Sui & David Raubenheimer, 2018. "Gluttony and guilt: monthly trends in internet search query data are comparable with national-level energy intake and dieting behavior," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-9, December.
    13. Borah, Abhishek & Rutz, Oliver, 2024. "Enhanced sales forecasting model using textual search data: Fusing dynamics with big data," International Journal of Research in Marketing, Elsevier, vol. 41(4), pages 632-647.
    14. Yunhan Huang & Quanyan Zhu, 2022. "Game-Theoretic Frameworks for Epidemic Spreading and Human Decision-Making: A Review," Dynamic Games and Applications, Springer, vol. 12(1), pages 7-48, March.
    15. Tobias Preis & Federico Botta & Helen Susannah Moat, 2020. "Sensing global tourism numbers with millions of publicly shared online photographs," Environment and Planning A, , vol. 52(3), pages 471-477, May.
    16. D'Amuri, Francesco & Marcucci, Juri, 2009. "‘Google it!’ Forecasting the US unemployment rate with a Google job search index," ISER Working Paper Series 2009-32, Institute for Social and Economic Research.
    17. Liwen Ling & Dabin Zhang & Shanying Chen & Amin W. Mugera, 2020. "Can online search data improve the forecast accuracy of pork price in China?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(4), pages 671-686, July.
    18. Klaus Ackermann & Simon D Angus & Paul A Raschky, 2020. "Estimating Sleep and Work Hours from Alternative Data by Segmented Functional Classification Analysis, SFCA," SoDa Laboratories Working Paper Series 2020-04, Monash University, SoDa Laboratories.
    19. Daniele Barchiesi & Helen Susannah Moat & Christian Alis & Steven Bishop & Tobias Preis, 2015. "Quantifying International Travel Flows Using Flickr," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-8, July.
    20. Breithaupt, Patrick & Kesler, Reinhold & Niebel, Thomas & Rammer, Christian, 2020. "Intangible capital indicators based on web scraping of social media," ZEW Discussion Papers 20-046, ZEW - Leibniz Centre for European Economic Research.
    21. Jensen, Carsten & Naumann, Elias, 2016. "Increasing pressures and support for public healthcare in Europe," Health Policy, Elsevier, vol. 120(6), pages 698-705.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:196:y:2025:i:c:s0960077925004333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.