IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v195y2025ics0960077925001808.html
   My bibliography  Save this article

Stochastic volatility model with long memory for water quantity-quality dynamics

Author

Listed:
  • Yoshioka, Hidekazu
  • Yoshioka, Yumi

Abstract

Water quantity and quality are vital indices for assessing fluvial environments. These indices are highly variable over time and include sub-exponential memory, where the influences of past events persist over long durations. Moreover, water quantity and quality are interdependent, with the former affecting the latter. However, this relationship has not been thoroughly studied from the perspective of long-memory processes, which this paper aims to address. We propose applying a new stochastic volatility model, a system of infinite-dimensional stochastic differential equations, to describe dynamic asset prices in finance and economics. Although the stochastic volatility model was originally developed for phenomena unrelated to the water environment, its mathematical universality allows for an interdisciplinary reinterpretation: river discharge is analogous to volatility, and water quality to asset prices. Moreover, the model's infinite-dimensional nature enables the analytical description of sub-exponential memory. The moments and autocorrelations of the model are then obtained analytically. We mathematically analyze the stochastic volatility model and investigate its applicability to the dynamics of water quantity and quality. Finally, we apply the model to real time-series data from a river in Japan, demonstrating that it effectively captures both the memory and the correlation of water quality indices to river discharge. This approach, grounded in infinite-dimensional stochastic differential equations, represents a novel contribution to the modeling and analysis of environmental systems where long memory processes play a role.

Suggested Citation

  • Yoshioka, Hidekazu & Yoshioka, Yumi, 2025. "Stochastic volatility model with long memory for water quantity-quality dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:chsofr:v:195:y:2025:i:c:s0960077925001808
    DOI: 10.1016/j.chaos.2025.116167
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925001808
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:195:y:2025:i:c:s0960077925001808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.