IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v192y2025ics0960077925000542.html
   My bibliography  Save this article

Dynamical behaviors of a generalist predator–prey system with Allee and wind effects in deterministic or stochastic environment

Author

Listed:
  • Yao, Haiqing
  • Wang, Qinglong
  • Liu, Zhijun

Abstract

In deterministic or stochastic environment, a generalist predator–prey system with the additive Allee effect and wind flow is explored by incorporating the Beverton–Holt type functional response to describe the influence of additional food on the growth of predators. First of all, in deterministic surroundings, we focus on positivity and boundedness of solutions, existence and stability of equilibrium points. Meanwhile, the occurrences of Hopf and transcritical bifurcations are analyzed by using the Hopf bifurcation theorem and Sotomayor’s theorem, respectively. It is worth mentioning that, in stochastic environment, the stochastic average theory is applied to simplify the stochastic system. The stability and stochastic bifurcations (P-bifurcation and D-bifurcation) are examined in accordance with Lyapunov exponent, invariant measure and singular boundary theory. Last but not least, our theoretical findings are consistent with numerical fruits.

Suggested Citation

  • Yao, Haiqing & Wang, Qinglong & Liu, Zhijun, 2025. "Dynamical behaviors of a generalist predator–prey system with Allee and wind effects in deterministic or stochastic environment," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000542
    DOI: 10.1016/j.chaos.2025.116041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925000542
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abbasi, Muhammad Aqib & Samreen, Maria, 2024. "Analyzing multi-parameter bifurcation on a prey–predator model with the Allee effect and fear effect," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    2. Mandal, Sayan & Sk, Nazmul & Tiwari, Pankaj Kumar & Chattopadhyay, Joydev, 2024. "Bistability in modified Holling II response model with harvesting and Allee effect: Exploring transitions in a noisy environment," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    3. Han, Renji & Dey, Subrata & Banerjee, Malay, 2023. "Spatio-temporal pattern selection in a prey–predator model with hunting cooperation and Allee effect in prey," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    4. Huang, Dongwei & Wang, Hongli & Feng, Jianfeng & Zhu, Zhi-wen, 2006. "Hopf bifurcation of the stochastic model on HAB nonlinear stochastic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 27(4), pages 1072-1079.
    5. Barman, Dipesh & Roy, Jyotirmoy & Alam, Shariful, 2022. "Impact of wind in the dynamics of prey–predator interactions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 49-81.
    6. Cui, Qianqian & Zhang, Qiang & Qiu, Zhipeng & Hu, Zengyun, 2016. "Complex dynamics of a discrete-time predator-prey system with Holling IV functional response," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 158-171.
    7. Wang, Zhaojuan & Deng, Meiling & Liu, Meng, 2021. "Stationary distribution of a stochastic ratio-dependent predator-prey system with regime-switching," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Qiaoling & Teng, Zhidong & Wang, Feng, 2021. "Fold-flip and strong resonance bifurcations of a discrete-time mosquito model," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Zhang, Yue & Zheng, Yan & Liu, Xi & Zhang, Qingling & Li, Aihua, 2016. "Dynamical analysis of a differential algebraic bio-economic model with stage-structured and stochastic fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 222-229.
    3. Zhao, Xin & Liu, Lidan & Liu, Meng & Fan, Meng, 2024. "Stochastic dynamics of coral reef system with stage-structure for crown-of-thorns starfish," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    4. Yang, Yafei & Fan, Meng, 2023. "Impact of selective grazing on the dynamics of a diffusive plankton model with component Allee effect and additional food," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    5. Zhao, Qiuyue & Liu, Shutang & Niu, Xinglong, 2019. "Dynamic behavior analysis of a diffusive plankton model with defensive and offensive effects," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 94-102.
    6. Ojha, Archana & Mandal, Sayan & Singh, Ravikant & Thakur, Nilesh Kumar & Tiwari, Pankaj Kumar, 2025. "Predator–prey dynamics in autonomous and nonautonomous settings: Impacts of anti-predator behavior, refuge, and additional food," Chaos, Solitons & Fractals, Elsevier, vol. 196(C).
    7. Mondal, Chirodeep & Kesh, Dipak & Mukherjee, Debasis, 2023. "Global stability and bifurcation analysis of an infochemical induced three species discrete-time phytoplankton–zooplankton model," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    8. Mandal, Sayan & Samanta, Sudip & Tiwari, Pankaj Kumar & Upadhyay, Ranjit Kumar, 2025. "Bifurcation analysis and exploration of noise-induced transitions of a food chain model with Allee effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 228(C), pages 313-338.
    9. Liu, Chao & Yu, Longfei & Zhang, Qingling & Li, Yuanke, 2018. "Dynamic analysis of a hybrid bioeconomic plankton system with double time delays and stochastic fluctuations," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 115-137.
    10. Hu, Zengyun & Teng, Zhidong & Zhang, Tailei & Zhou, Qiming & Chen, Xi, 2017. "Globally asymptotically stable analysis in a discrete time eco-epidemiological system," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 20-31.
    11. Juan Liu & Jie Hu & Peter Yuen & Fuzhong Li, 2022. "A Seasonally Competitive M-Prey and N-Predator Impulsive System Modeled by General Functional Response for Integrated Pest Management," Mathematics, MDPI, vol. 10(15), pages 1-15, July.
    12. Yuanlin Ma & Xingwang Yu, 2022. "Stationary Probability Density Analysis for the Randomly Forced Phytoplankton–Zooplankton Model with Correlated Colored Noises," Mathematics, MDPI, vol. 10(14), pages 1-11, July.
    13. Rajchakit, G. & Sriraman, R. & Vignesh, P. & Lim, C.P., 2021. "Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    14. Subarna Roy & Pankaj Kumar Tiwari, 2024. "Multistability in a predator–prey model with generalist predator and strong Allee effect in prey," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(11), pages 1-20, November.
    15. Zhao, Jiantao & Wei, Junjie, 2009. "Stability and bifurcation in a two harmful phytoplankton–zooplankton system," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1395-1409.
    16. Evariste Sanchez-Palencia & M. A. Aziz-Alaoui, 2024. "Trends and Paradoxes of Competitive Evolution in the Predation Mechanism," Mathematics, MDPI, vol. 12(7), pages 1-17, April.
    17. Zhang, Shengqiang & Yuan, Sanling & Zhang, Tonghua, 2022. "A predator-prey model with different response functions to juvenile and adult prey in deterministic and stochastic environments," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    18. Lu, Chun, 2022. "Dynamical analysis and numerical simulations on a crowley-Martin predator-prey model in stochastic environment," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    19. Mondal, Bapin & Mandal, Sayan & Tiwari, Pankaj Kumar & Upadhyay, Ranjit Kumar, 2025. "How predator harvesting affects prey-predator dynamics in deterministic and stochastic environments?," Applied Mathematics and Computation, Elsevier, vol. 498(C).
    20. Sajan, & Anshu, & Dubey, Balram, 2024. "Study of a cannibalistic prey–predator model with Allee effect in prey under the presence of diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.