Interpretable credit scoring based on an additive extreme gradient boosting
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2025.116216
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wiginton, John C., 1980. "A Note on the Comparison of Logit and Discriminant Models of Consumer Credit Behavior," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 15(3), pages 757-770, September.
- D. J. Hand & W. E. Henley, 1997. "Statistical Classification Methods in Consumer Credit Scoring: a Review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 160(3), pages 523-541, September.
- Basim Mahbooba & Mohan Timilsina & Radhya Sahal & Martin Serrano & Ahmed Mostafa Khalil, 2021. "Explainable Artificial Intelligence (XAI) to Enhance Trust Management in Intrusion Detection Systems Using Decision Tree Model," Complexity, Hindawi, vol. 2021, pages 1-11, January.
- Raffaella Calabrese & Silvia Angela Osmetti, 2013. "Modelling small and medium enterprise loan defaults as rare events: the generalized extreme value regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(6), pages 1172-1188, June.
- Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
- Teng, Huei-Wen & Kang, Ming-Hsuan & Lee, I-Han & Bai, Le-Chi, 2024. "Bridging accuracy and interpretability: A rescaled cluster-then-predict approach for enhanced credit scoring," International Review of Financial Analysis, Elsevier, vol. 91(C).
- Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
- Sami Ben Jabeur & Nicolae Stef & Pedro Carmona, 2023. "Bankruptcy Prediction using the XGBoost Algorithm and Variable Importance Feature Engineering," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 715-741, February.
- Xiao, Jin & Zhong, Yu & Jia, Yanlin & Wang, Yadong & Li, Ruoyi & Jiang, Xiaoyi & Wang, Shouyang, 2024. "A novel deep ensemble model for imbalanced credit scoring in internet finance," International Journal of Forecasting, Elsevier, vol. 40(1), pages 348-372.
- Yufei Xia & Xinyi Guo & Yinguo Li & Lingyun He & Xueyuan Chen, 2022. "Deep learning meets decision trees: An application of a heterogeneous deep forest approach in credit scoring for online consumer lending," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1669-1690, December.
- Daniel W. Apley & Jingyu Zhu, 2020. "Visualizing the effects of predictor variables in black box supervised learning models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 1059-1086, September.
- Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
- Alexandre, Michel & Silva, Thiago Christiano & Connaughton, Colm & Rodrigues, Francisco A., 2021. "The drivers of systemic risk in financial networks: a data-driven machine learning analysis," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
- Li, Ao & Xiao, Fu & Zhang, Chong & Fan, Cheng, 2021. "Attention-based interpretable neural network for building cooling load prediction," Applied Energy, Elsevier, vol. 299(C).
- Lee, Tian-Shyug & Chiu, Chih-Chou & Chou, Yu-Chao & Lu, Chi-Jie, 2006. "Mining the customer credit using classification and regression tree and multivariate adaptive regression splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 1113-1130, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rasa Kanapickiene & Renatas Spicas, 2019. "Credit Risk Assessment Model for Small and Micro-Enterprises: The Case of Lithuania," Risks, MDPI, vol. 7(2), pages 1-23, June.
- Adnan Dželihodžić & Dženana Đonko & Jasmin Kevrić, 2018. "Improved Credit Scoring Model Based on Bagging Neural Network," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(06), pages 1725-1741, November.
- Nadia Ayed & Khemaies Bougatef, 2024. "Performance Assessment of Logistic Regression (LR), Artificial Neural Network (ANN), Fuzzy Inference System (FIS) and Adaptive Neuro-Fuzzy System (ANFIS) in Predicting Default Probability: The Case of," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1803-1835, September.
- Juan Laborda & Seyong Ryoo, 2021. "Feature Selection in a Credit Scoring Model," Mathematics, MDPI, vol. 9(7), pages 1-22, March.
- Soo Young Kim, 2018. "Predicting hospitality financial distress with ensemble models: the case of US hotels, restaurants, and amusement and recreation," Service Business, Springer;Pan-Pacific Business Association, vol. 12(3), pages 483-503, September.
- Gintare Giriūniene & Lukas Giriūnas & Mangirdas Morkunas & Laura Brucaite, 2019. "A Comparison on Leading Methodologies for Bankruptcy Prediction: The Case of the Construction Sector in Lithuania," Economies, MDPI, vol. 7(3), pages 1-20, August.
- Petr Jakubík & Petr Teplý, 2011. "The JT Index as an Indicator of Financial Stability of Corporate Sector," Prague Economic Papers, Prague University of Economics and Business, vol. 2011(2), pages 157-176.
- Huei-Wen Teng & Michael Lee, 2019. "Estimation Procedures of Using Five Alternative Machine Learning Methods for Predicting Credit Card Default," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-27, September.
- Koen W. de Bock, 2017. "The best of two worlds: Balancing model strength and comprehensibility in business failure prediction using spline-rule ensembles," Post-Print hal-01588059, HAL.
- Richard Chamboko & Jorge Miguel Bravo, 2020. "A Multi-State Approach to Modelling Intermediate Events and Multiple Mortgage Loan Outcomes," Risks, MDPI, vol. 8(2), pages 1-29, June.
- Chris Charalambous & Spiros H. Martzoukos & Zenon Taoushianis, 2022. "Estimating corporate bankruptcy forecasting models by maximizing discriminatory power," Review of Quantitative Finance and Accounting, Springer, vol. 58(1), pages 297-328, January.
- Dagmar Camska & Jiri Klecka, 2020. "Comparison of Prediction Models Applied in Economic Recession and Expansion," JRFM, MDPI, vol. 13(3), pages 1-16, March.
- Tomasz Pisula, 2020. "An Ensemble Classifier-Based Scoring Model for Predicting Bankruptcy of Polish Companies in the Podkarpackie Voivodeship," JRFM, MDPI, vol. 13(2), pages 1-35, February.
- De Bock, Koen W. & Coussement, Kristof & Lessmann, Stefan, 2020. "Cost-sensitive business failure prediction when misclassification costs are uncertain: A heterogeneous ensemble selection approach," European Journal of Operational Research, Elsevier, vol. 285(2), pages 612-630.
- Scognamiglio, Elisabetta & Di Lorenzo, Emilia & Sibillo, Marilena & Trotta, Annarita, 2019. "Social uncertainty evaluation in Social Impact Bonds: Review and framework," Research in International Business and Finance, Elsevier, vol. 47(C), pages 40-56.
- Zoričák, Martin & Gnip, Peter & Drotár, Peter & Gazda, Vladimír, 2020. "Bankruptcy prediction for small- and medium-sized companies using severely imbalanced datasets," Economic Modelling, Elsevier, vol. 84(C), pages 165-176.
- Yiheng Li & Weidong Chen, 2020. "A Comparative Performance Assessment of Ensemble Learning for Credit Scoring," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
- Dalila Boughaci & Abdullah A. K. Alkhawaldeh & Jamil J. Jaber & Nawaf Hamadneh, 2021. "Classification with segmentation for credit scoring and bankruptcy prediction," Empirical Economics, Springer, vol. 61(3), pages 1281-1309, September.
- Lisa Crosato & Caterina Liberati & Marco Repetto, 2021. "Look Who's Talking: Interpretable Machine Learning for Assessing Italian SMEs Credit Default," Papers 2108.13914, arXiv.org, revised Sep 2021.
- Durand, Pierre & Le Quang, Gaëtan, 2022. "Banks to basics! Why banking regulation should focus on equity," European Journal of Operational Research, Elsevier, vol. 301(1), pages 349-372.
More about this item
Keywords
Credit scoring; Additive ensemble model; Add-XGBoost; Global and local interpretability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002292. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.