IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v191y2025ics0960077924013195.html
   My bibliography  Save this article

Quantifying and predicting evolutionary networks

Author

Listed:
  • Jing, Fei
  • Zhang, Zhong
  • Wu, Jian-Liang
  • Hu, Die
  • Zhang, Zi-Ke

Abstract

The process of network evolution is typically characterized by the emergence of topological structures and the intricate interplay between determinism and stochasticity. Our work introduces a novel structural analysis framework to observe fluctuations in the network evolution process, profoundly influenced by the underlying network generation mechanisms. Based on theoretical reasoning and empirical examination, utilizing synthetic, static, and temporal networks, we arrive at two principal conclusions. Firstly, we reveal that the degree and distance distributions of networks exhibit two dynamic phenomena, convergence and divergence on high- and low-frequency curves, depend on the reflections of the network generation mechanism at both topological extreme values and the overall distribution. Secondly, we develop a novel link prediction method based on the convergence of topological fluctuations, which significantly outperforms benchmark algorithms in both real static and temporal networks. These findings are of considerable significance to the study of real network evolution mechanisms, contributing to a more comprehensive understanding of network behavior over time.

Suggested Citation

  • Jing, Fei & Zhang, Zhong & Wu, Jian-Liang & Hu, Die & Zhang, Zi-Ke, 2025. "Quantifying and predicting evolutionary networks," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924013195
    DOI: 10.1016/j.chaos.2024.115767
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924013195
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115767?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    2. Jiachen Sun & Ling Feng & Jiarong Xie & Xiao Ma & Dashun Wang & Yanqing Hu, 2020. "Revealing the predictability of intrinsic structure in complex networks," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Yunan Luo & Xinbin Zhao & Jingtian Zhou & Jinglin Yang & Yanqing Zhang & Wenhua Kuang & Jian Peng & Ligong Chen & Jianyang Zeng, 2017. "A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    4. Bin Zhou & Petter Holme & Zaiwu Gong & Choujun Zhan & Yao Huang & Xin Lu & Xiangyi Meng, 2023. "The nature and nurture of network evolution," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Gordon Pennycook & Ziv Epstein & Mohsen Mosleh & Antonio A. Arechar & Dean Eckles & David G. Rand, 2021. "Shifting attention to accuracy can reduce misinformation online," Nature, Nature, vol. 592(7855), pages 590-595, April.
    6. Sun, Xiaoqian & Wandelt, Sebastian & Zhang, Anming, 2020. "How did COVID-19 impact air transportation? A first peek through the lens of complex networks," Journal of Air Transport Management, Elsevier, vol. 89(C).
    7. Michael M. Danziger & Albert-László Barabási, 2022. "Recovery coupling in multilayer networks," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Xie He & Amir Ghasemian & Eun Lee & Aaron Clauset & Peter J. Mucha, 2024. "Sequential stacking link prediction algorithms for temporal networks," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Chengcheng Shao & Giovanni Luca Ciampaglia & Onur Varol & Kai-Cheng Yang & Alessandro Flammini & Filippo Menczer, 2018. "The spread of low-credibility content by social bots," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    10. Liu, Xi & Gong, Li & Gong, Yongxi & Liu, Yu, 2015. "Revealing travel patterns and city structure with taxi trip data," Journal of Transport Geography, Elsevier, vol. 43(C), pages 78-90.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tolcha, Tassew Dufera, 2023. "The state of Africa's air transport market amid COVID-19, and forecasts for recovery," Journal of Air Transport Management, Elsevier, vol. 108(C).
    2. Chenlong Wang & Pablo Lucas, 2024. "Efficiency of Community-Based Content Moderation Mechanisms: A Discussion Focused on Birdwatch," Group Decision and Negotiation, Springer, vol. 33(3), pages 673-709, June.
    3. Benjamin Davies & David C. Maré, 2020. "Delineating functional labour market areas with estimable classification stabilities," Working Papers 20_08, Motu Economic and Public Policy Research.
    4. Wu, Xiangru & Wang, Kun & Fu, Xiaowen & Dong, Kangyin & Sun, Xiaoqian & Hoon Oum, Tae, 2025. "How does COVID-19 pandemic affect airline’s route choice and market contact? − Full-service carriers vs. low-cost carriers in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 191(C).
    5. He, Yifan & Zhao, Chen & Zeng, An, 2022. "Ranking locations in a city via the collective home-work relations in human mobility data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    6. Nicolás Ajzenman & Bruno Ferman & Sant’Anna Pedro C., 2023. "Discrimination in the Formation of Academic Networks: A Field Experiment on #EconTwitter," Working Papers 235, Red Nacional de Investigadores en Economía (RedNIE).
    7. Buechel, Berno & Klößner, Stefan & Meng, Fanyuan & Nassar, Anis, 2023. "Misinformation due to asymmetric information sharing," Journal of Economic Dynamics and Control, Elsevier, vol. 150(C).
    8. Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Marcin Wk{a}torek, 2023. "What is mature and what is still emerging in the cryptocurrency market?," Papers 2305.05751, arXiv.org.
    9. Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.
    10. Rosa Caiazza & Phillip Phan & Erik Lehmann & Henry Etzkowitz, 2021. "An absorptive capacity-based systems view of Covid-19 in the small business economy," International Entrepreneurship and Management Journal, Springer, vol. 17(3), pages 1419-1439, September.
    11. Kirtonia, Sajeeb & Sun, Yanshuo, 2022. "Evaluating rail transit's comparative advantages in travel cost and time over taxi with open data in two U.S. cities," Transport Policy, Elsevier, vol. 115(C), pages 75-87.
    12. John Higgins & Tarun Sabarwal, 2023. "Control and spread of contagion in networks with global effects," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 25(6), pages 1149-1187, December.
    13. Hiney, Noel & Efthymiou, Marina & Morgenroth, Edgar, 2023. "Impact of Covid-19 on Irish airport stakeholder relationships," Annals of Tourism Research, Elsevier, vol. 102(C).
    14. Zhou, Xiaolu & Wang, Mingshu & Li, Dongying, 2019. "Bike-sharing or taxi? Modeling the choices of travel mode in Chicago using machine learning," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    15. Xuhao Shao & Ao Li & Chuansheng Chen & Elizabeth F. Loftus & Bi Zhu, 2023. "Cross-stage neural pattern similarity in the hippocampus predicts false memory derived from post-event inaccurate information," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Yiu, Cho Yin & Ng, Kam K.H. & Yu, Simon C.M. & Yu, Chun Wah, 2022. "Sustaining aviation workforce after the pandemic: Evidence from Hong Kong aviation students toward skills, specialised training, and career prospects through a mixed-method approach," Transport Policy, Elsevier, vol. 128(C), pages 179-192.
    17. Sun, Xiaoqian & Wandelt, Sebastian & Zhang, Anming, 2021. "Technological and educational challenges towards pandemic-resilient aviation," Transport Policy, Elsevier, vol. 114(C), pages 104-115.
    18. Hong, Ziyang & Liu, Qingfu & Tse, Yiuman & Wang, Zilu, 2023. "Black mouth, investor attention, and stock return," International Review of Financial Analysis, Elsevier, vol. 90(C).
    19. Xia, Huosong & Wang, Yuan & Zhang, Justin Zuopeng & Zheng, Leven J. & Kamal, Muhammad Mustafa & Arya, Varsha, 2023. "COVID-19 fake news detection: A hybrid CNN-BiLSTM-AM model," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    20. Sun, Jiachen & Feng, Ling & Du, Mingwei & Ma, Xiao & Fan, Zhengping & Gloor, Peter & Hu, Yanqing, 2021. "Ultra-efficient information detection on large-scale online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924013195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.