IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v141y2020ics0960077920308055.html
   My bibliography  Save this article

Path-dependent game options with Asian features

Author

Listed:
  • Guo, Peidong
  • Zhang, Jizhou
  • Wang, Qian

Abstract

The game option is a special American option, where the option seller has the early exercise right as well as the buyer. The purpose of this paper is to examine the pricing behaviors of a call game option with a floating strike, where the payoff of the option depends on the geometric average value of the underlying assets over the life of the option(i.e., the game option with the Asian feature). We obtain the integral expression of option pricing formula and provide the integral expression for the penalties paid by the option seller. In addition, we derive optimal exercise strategies and continuation regions of options. Finally, the influence of relevant parameters on liquidated damages is analyzed through numerical simulation.

Suggested Citation

  • Guo, Peidong & Zhang, Jizhou & Wang, Qian, 2020. "Path-dependent game options with Asian features," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
  • Handle: RePEc:eee:chsofr:v:141:y:2020:i:c:s0960077920308055
    DOI: 10.1016/j.chaos.2020.110412
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920308055
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110412?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmadian, D. & Ballestra, L.V., 2020. "Pricing geometric Asian rainbow options under the mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    2. Zaevski, Tsvetelin S., 2020. "Discounted perpetual game put options," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    3. Baurdoux, Erik J. & Kyprianou, Andreas E., 2004. "Further calculations for Israeli options," LSE Research Online Documents on Economics 23916, London School of Economics and Political Science, LSE Library.
    4. Le, Nhat-Tan & Dang, Duy-Minh, 2017. "Pricing American-style Parisian down-and-out call options," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 330-347.
    5. Roxana Dumitrescu & Marie-Claire Quenez & Agn`es Sulem, 2015. "Game options in an imperfect market with default," Papers 1511.09041, arXiv.org, revised Jul 2017.
    6. Andreas Kyprianou, 2004. "Some calculations for Israeli options," Finance and Stochastics, Springer, vol. 8(1), pages 73-86, January.
    7. Xingchun Wang, 2020. "Analytical valuation of Asian options with counterparty risk under stochastic volatility models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(3), pages 410-429, March.
    8. Gao, Rong & Wu, Wei & Lang, Chao & Lang, Liying, 2020. "Geometric Asian barrier option pricing formulas of uncertain stock model," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    9. Peidong Guo & Qihong Chen & Xicai Guo & Yue Fang, 2014. "Path-dependent game options: a lookback case," Review of Derivatives Research, Springer, vol. 17(1), pages 113-124, April.
    10. S. C. P. Yam & S. P. Yung & W. Zhou, 2014. "Game Call Options Revisited," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 173-206, January.
    11. Wang, Xingchun, 2020. "Valuation of Asian options with default risk under GARCH models," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 27-40.
    12. Zaevski, Tsvetelin S., 2020. "Discounted perpetual game call options," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    13. Madi, Sofiane & Cherif Bouras, Mohamed & Haiour, Mohamed & Stahel, Andreas, 2018. "Pricing of American options, using the Brennan–Schwartz algorithm based on finite elements," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 846-852.
    14. Zhang, Sumei & Gao, Xiong, 2019. "An asymptotic expansion method for geometric Asian options pricing under the double Heston model," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 1-9.
    15. Alet Roux, 2016. "Pricing And Hedging Game Options In Currency Models With Proportional Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(07), pages 1-25, November.
    16. Christoph Kühn & Andreas E. Kyprianou, 2007. "Callable Puts As Composite Exotic Options," Mathematical Finance, Wiley Blackwell, vol. 17(4), pages 487-502, October.
    17. Yuri Kifer, 2006. "Error estimates for binomial approximations of game options," Papers math/0607123, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsvetelin S. Zaevski, 2022. "Pricing cancellable American put options on the finite time horizon," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(7), pages 1284-1303, July.
    2. Zaevski, Tsvetelin S., 2020. "Discounted perpetual game call options," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    3. Benjamin Gottesman Berdah, 2020. "Recombining tree approximations for Game Options in Local Volatility models," Papers 2007.02323, arXiv.org, revised Jul 2020.
    4. Zaevski, Tsvetelin S., 2020. "Discounted perpetual game put options," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    5. Peidong Guo & Qihong Chen & Xicai Guo & Yue Fang, 2014. "Path-dependent game options: a lookback case," Review of Derivatives Research, Springer, vol. 17(1), pages 113-124, April.
    6. Yuri Kifer, 2012. "Dynkin Games and Israeli Options," Papers 1209.1791, arXiv.org.
    7. Hsuan-Ku Liu, 2013. "The pricing formula for cancellable European options," Papers 1304.5962, arXiv.org, revised Sep 2014.
    8. Hsuan-Ku Liu, 2021. "Perpetual callable American volatility options in a mean-reverting volatility model," Papers 2104.01127, arXiv.org.
    9. Xingchun Wang, 2021. "Pricing vulnerable options with jump risk and liquidity risk," Review of Derivatives Research, Springer, vol. 24(3), pages 243-260, October.
    10. Tiziano De Angelis & Fabien Gensbittel & Stephane Villeneuve, 2021. "A Dynkin Game on Assets with Incomplete Information on the Return," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 28-60, February.
    11. Deng, Guohe, 2020. "Pricing perpetual American floating strike lookback option under multiscale stochastic volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    12. Gunter H Meyer, 2016. "A PDE View of Games Options," Research Paper Series 369, Quantitative Finance Research Centre, University of Technology, Sydney.
    13. Huang, Haishi, 2010. "Convertible Bonds: Risks and Optimal Strategies," Bonn Econ Discussion Papers 07/2010, University of Bonn, Bonn Graduate School of Economics (BGSE).
    14. Wong, Tat Wing & Fung, Ka Wai Terence & Leung, Kwai Sun, 2020. "Strategic bank closure and deposit insurance valuation," European Journal of Operational Research, Elsevier, vol. 285(1), pages 96-105.
    15. Tsvetelin S. Zaevski, 2023. "American strangle options with arbitrary strikes," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(7), pages 880-903, July.
    16. Tianyang Nie & Edward Kim & Marek Rutkowski, 2018. "Arbitrage-Free Pricing of Game Options in Nonlinear Markets," Papers 1807.05448, arXiv.org.
    17. Yan, Dong & Lin, Sha & Hu, Zhihao & Yang, Ben-Zhang, 2022. "Pricing American options with stochastic volatility and small nonlinear price impact: A PDE approach," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    18. Yuri Kifer, 2006. "Error estimates for binomial approximations of game options," Papers math/0607123, arXiv.org.
    19. Alet Roux & Tomasz Zastawniak, 2016. "Game options with gradual exercise and cancellation under proportional transaction costs," Papers 1612.02312, arXiv.org.
    20. Zaevski, Tsvetelin S., 2022. "Pricing discounted American capped options," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).

    More about this item

    Keywords

    Game options; Asian features; American options; Path dependent;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:141:y:2020:i:c:s0960077920308055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.