IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i1p306-315.html
   My bibliography  Save this article

Kinetic study for the reduction of residual char particles using oxygen and air

Author

Listed:
  • Molintas, H.
  • Gupta, A.K.

Abstract

This study characterizes the chemical kinetics for the reduction and elimination of char particles using air and pure oxygen as the oxidants. Commercial carbon black was used as char for the experimental studies reported here. Different oxidant injection flow rates have been examined at various injection temperatures between 400 and 700 °C under atmospheric pressure conditions to obtain the intrinsic kinetic parameters. The char conversion rates have been measured in a laminar flow hot stream using 0.2 g and 0.3 g mass of initial char samples. The kinetic parameters are obtained by fitting the available experimental data into the derived one-film model. The proposed one-film model is compared and analyzed for consistency and reliability for the calculated intrinsic kinetic parameters.

Suggested Citation

  • Molintas, H. & Gupta, A.K., 2011. "Kinetic study for the reduction of residual char particles using oxygen and air," Applied Energy, Elsevier, vol. 88(1), pages 306-315, January.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:1:p:306-315
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00263-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmed, I. & Gupta, A.K., 2009. "Syngas yield during pyrolysis and steam gasification of paper," Applied Energy, Elsevier, vol. 86(9), pages 1813-1821, September.
    2. Ahmed, I. & Gupta, A.K., 2009. "Evolution of syngas from cardboard gasification," Applied Energy, Elsevier, vol. 86(9), pages 1732-1740, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, I.I. & Gupta, A.K., 2013. "Experiments and stochastic simulations of lignite coal during pyrolysis and gasification," Applied Energy, Elsevier, vol. 102(C), pages 355-363.
    2. Nipattummakul, Nimit & Ahmed, Islam I. & Kerdsuwan, Somrat & Gupta, Ashwani K., 2012. "Steam gasification of oil palm trunk waste for clean syngas production," Applied Energy, Elsevier, vol. 92(C), pages 778-782.
    3. Umeki, Kentaro & Yamamoto, Kouichi & Namioka, Tomoaki & Yoshikawa, Kunio, 2010. "High temperature steam-only gasification of woody biomass," Applied Energy, Elsevier, vol. 87(3), pages 791-798, March.
    4. Arpa, Orhan & Yumrutas, Recep & Demirbas, Ayhan, 2010. "Production of diesel-like fuel from waste engine oil by pyrolitic distillation," Applied Energy, Elsevier, vol. 87(1), pages 122-127, January.
    5. Parthasarathy, Prakash & Narayanan, K. Sheeba, 2014. "Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield – A review," Renewable Energy, Elsevier, vol. 66(C), pages 570-579.
    6. Ahmed, I. & Gupta, A.K., 2009. "Characteristics of cardboard and paper gasification with CO2," Applied Energy, Elsevier, vol. 86(12), pages 2626-2634, December.
    7. Ahmed, I.I. & Gupta, A.K., 2012. "Sugarcane bagasse gasification: Global reaction mechanism of syngas evolution," Applied Energy, Elsevier, vol. 91(1), pages 75-81.
    8. Chen, Wei-Hsin & Lin, Bo-Jhih, 2013. "Hydrogen and synthesis gas production from activated carbon and steam via reusing carbon dioxide," Applied Energy, Elsevier, vol. 101(C), pages 551-559.
    9. Ahmed, I. & Jangsawang, W. & Gupta, A.K., 2012. "Energy recovery from pyrolysis and gasification of mangrove," Applied Energy, Elsevier, vol. 91(1), pages 173-179.
    10. Ahmed, I.I. & Nipattummakul, N. & Gupta, A.K., 2011. "Characteristics of syngas from co-gasification of polyethylene and woodchips," Applied Energy, Elsevier, vol. 88(1), pages 165-174, January.
    11. Xu, Z.R. & Zhu, W. & Li, M. & Zhang, H.W. & Gong, M., 2013. "Quantitative analysis of polycyclic aromatic hydrocarbons in solid residues from supercritical water gasification of wet sewage sludge," Applied Energy, Elsevier, vol. 102(C), pages 476-483.
    12. Nipattummakul, Nimit & Ahmed, Islam & Kerdsuwan, Somrat & Gupta, Ashwani K., 2010. "High temperature steam gasification of wastewater sludge," Applied Energy, Elsevier, vol. 87(12), pages 3729-3734, December.
    13. Ahmed, I.I. & Gupta, A.K., 2011. "Kinetics of woodchips char gasification with steam and carbon dioxide," Applied Energy, Elsevier, vol. 88(5), pages 1613-1619, May.
    14. Ahmed, I.I. & Gupta, A.K., 2010. "Pyrolysis and gasification of food waste: Syngas characteristics and char gasification kinetics," Applied Energy, Elsevier, vol. 87(1), pages 101-108, January.
    15. Patrik Šuhaj & Jakub Husár & Juma Haydary, 2020. "Gasification of RDF and Its Components with Tire Pyrolysis Char as Tar-Cracking Catalyst," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    16. Huang, Yu-Fong & Shih, Chun-Hao & Chiueh, Pei-Te & Lo, Shang-Lien, 2015. "Microwave co-pyrolysis of sewage sludge and rice straw," Energy, Elsevier, vol. 87(C), pages 638-644.
    17. Burra, K.G. & Hussein, M.S. & Amano, R.S. & Gupta, A.K., 2016. "Syngas evolutionary behavior during chicken manure pyrolysis and air gasification," Applied Energy, Elsevier, vol. 181(C), pages 408-415.
    18. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    19. Fan Li & Dong Liu & Ke Sun & Songheng Yang & Fangzheng Peng & Kexin Zhang & Guodong Guo & Yuan Si, 2024. "Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
    20. Chandra Lal Pandey, 2021. "Managing urban water security: challenges and prospects in Nepal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 241-257, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:1:p:306-315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.