IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i11p3580-3591.html
   My bibliography  Save this article

Multi-objective optimization of a multi water-to-water heat pump system using evolutionary algorithm

Author

Listed:
  • Murr, R.
  • Thieriot, H.
  • Zoughaib, A.
  • Clodic, D.

Abstract

This paper deals with the energy recovery in the dairy industry. Thermodynamic, economic and environmental optimization of three water-to-water heat pumps has been studied in order to replace totally or partially a fuel boiler used to produce heat at different temperature levels in a cheese factory. These heat pumps have their evaporators connected to one effluents source and two of them are equipped by storage tanks at the condenser side. Multi-objective optimization permits optimal repartition of mass flow rates of effluents and optimal choice of electrical power of the compressors and volumes of storage tanks. The thermodynamic objective is based on the exergy destruction in the whole system. The economic objective is based on the investment cost and the operating cost obtained with the heat pump system. The environmental impact objective has been defined and expressed in cost terms by considering a CO2 taxation (carbon tax) on the GHG emissions. This objective has been integrated with the economic objective. Multi-objective genetic algorithms are used for Pareto approach optimization.

Suggested Citation

  • Murr, R. & Thieriot, H. & Zoughaib, A. & Clodic, D., 2011. "Multi-objective optimization of a multi water-to-water heat pump system using evolutionary algorithm," Applied Energy, Elsevier, vol. 88(11), pages 3580-3591.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:11:p:3580-3591
    DOI: 10.1016/j.apenergy.2011.04.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911002352
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.04.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saidur, R. & Ahamed, J.U. & Masjuki, H.H., 2010. "Energy, exergy and economic analysis of industrial boilers," Energy Policy, Elsevier, vol. 38(5), pages 2188-2197, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheung, Brian C. & Carriveau, Rupp & Ting, David S.K., 2014. "Multi-objective optimization of an underwater compressed air energy storage system using genetic algorithm," Energy, Elsevier, vol. 74(C), pages 396-404.
    2. Namuli, R. & Jaumard, B. & Awasthi, A. & Pillay, P., 2013. "Optimisation of biomass waste to energy conversion systems for rural grid-connected applications," Applied Energy, Elsevier, vol. 102(C), pages 1013-1021.
    3. Kang, Lixia & Liu, Yongzhong, 2015. "Multi-objective optimization on a heat exchanger network retrofit with a heat pump and analysis of CO2 emissions control," Applied Energy, Elsevier, vol. 154(C), pages 696-708.
    4. Breen, M. & Murphy, M.D. & Upton, J., 2019. "Development of a dairy multi-objective optimization (DAIRYMOO) method for economic and environmental optimization of dairy farms," Applied Energy, Elsevier, vol. 242(C), pages 1697-1711.
    5. Sorgüven, Esra & Özilgen, Mustafa, 2012. "Energy utilization, carbon dioxide emission, and exergy loss in flavored yogurt production process," Energy, Elsevier, vol. 40(1), pages 214-225.
    6. Yang, Minbo & Li, Ting & Feng, Xiao & Wang, Yufei, 2020. "A simulation-based targeting method for heat pump placements in heat exchanger networks," Energy, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francis Chinweuba Eboh & Peter Ahlström & Tobias Richards, 2017. "Exergy Analysis of Solid Fuel-Fired Heat and Power Plants: A Review," Energies, MDPI, vol. 10(2), pages 1-29, February.
    2. Hang Yin & Yingai Jin & Liang Li & Wenbo Lv, 2022. "Numerical Investigation on the Impact of Exergy Analysis and Structural Improvement in Power Plant Boiler through Co-Simulation," Energies, MDPI, vol. 15(21), pages 1-19, October.
    3. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.
    4. Sajad Koochakinia & Amir Ebrahimi-Moghadam & Mahdi Deymi-Dashtebayaz, 2022. "Techno-Environmental Analyses and Optimization of a Utility Boiler Based on Real Data," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    5. Kou, Xiaoxue & Wang, Ruzhu, 2023. "Thermodynamic analysis of electric to thermal heating pathways coupled with thermal energy storage," Energy, Elsevier, vol. 284(C).
    6. Behbahaninia, A. & Ramezani, S. & Lotfi Hejrandoost, M., 2017. "A loss method for exergy auditing of steam boilers," Energy, Elsevier, vol. 140(P1), pages 253-260.
    7. Tahir, Muhammad Faizan & Haoyong, Chen & Guangze, Han, 2022. "Evaluating individual heating alternatives in integrated energy system by employing energy and exergy analysis," Energy, Elsevier, vol. 249(C).
    8. Ahamed, J.U. & Madlool, N.A. & Saidur, R. & Shahinuddin, M.I. & Kamyar, A. & Masjuki, H.H., 2012. "Assessment of energy and exergy efficiencies of a grate clinker cooling system through the optimization of its operational parameters," Energy, Elsevier, vol. 46(1), pages 664-674.
    9. BoroumandJazi, G. & Saidur, R. & Rismanchi, B. & Mekhilef, S., 2012. "A review on the relation between the energy and exergy efficiency analysis and the technical characteristic of the renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3131-3135.
    10. BoroumandJazi, G. & Rismanchi, B. & Saidur, R., 2013. "A review on exergy analysis of industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 198-203.
    11. Nandimandalam, Hariteja & Gude, Veera Gnaneswar, 2022. "Renewable wood residue sources as potential alternative for fossil fuel dominated electricity mix for regions in Mississippi: A techno-economic analysis," Renewable Energy, Elsevier, vol. 200(C), pages 1105-1119.
    12. Kaushik, S.C. & Reddy, V. Siva & Tyagi, S.K., 2011. "Energy and exergy analyses of thermal power plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1857-1872, May.
    13. Ramos, Vinícius Faria & Pinheiro, Olivert Soares & Ferreira da Costa, Esly & Souza da Costa, Andréa Oliveira, 2019. "A method for exergetic analysis of a real kraft biomass boiler," Energy, Elsevier, vol. 183(C), pages 946-957.
    14. Vázquez-Rowe, Ian & Reyna, Janet L. & García-Torres, Samy & Kahhat, Ramzy, 2015. "Is climate change-centrism an optimal policy making strategy to set national electricity mixes?," Applied Energy, Elsevier, vol. 159(C), pages 108-116.
    15. Ahamed, J.U. & Saidur, R. & Masjuki, H.H., 2011. "A review on exergy analysis of vapor compression refrigeration system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1593-1600, April.
    16. Costanza, Vicente & Rivadeneira, Pablo S., 2015. "Optimal supervisory control of steam generators operating in parallel," Energy, Elsevier, vol. 93(P2), pages 1819-1831.
    17. Meratizaman, Mousa & Monadizadeh, Sina & Tohidi Sardasht, Mohammad & Amidpour, Majid, 2015. "Techno economic and environmental assessment of using gasification process in order to mitigate the emission in the available steam power cycle," Energy, Elsevier, vol. 83(C), pages 1-14.
    18. Kwofie, E.M. & Ngadi, M. & Sotocinal, S., 2017. "Thermodynamic evaluation of a rice husk fired integrated steam and hot air generation unit for rice parboiling," Energy, Elsevier, vol. 128(C), pages 39-49.
    19. Hasanuzzaman, M. & Rahim, N.A. & Hosenuzzaman, M. & Saidur, R. & Mahbubul, I.M. & Rashid, M.M., 2012. "Energy savings in the combustion based process heating in industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4527-4536.
    20. Wang, Chaojun & He, Boshu & Sun, Shaoyang & Wu, Ying & Yan, Na & Yan, Linbo & Pei, Xiaohui, 2012. "Application of a low pressure economizer for waste heat recovery from the exhaust flue gas in a 600 MW power plant," Energy, Elsevier, vol. 48(1), pages 196-202.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:11:p:3580-3591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.