IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i6p895-903.html
   My bibliography  Save this article

Estimating the power and number of microturbines in small-scale combined heat and power systems

Author

Listed:
  • Sanaye, Sepehr
  • Ardali, Moslem Raessi

Abstract

Utilizing the combined heat and power (CHP) systems to produce both electricity and heat is growing rapidly due to their high efficiency and low emissions in domestic, commercial, and industrial applications. In the first two categories among available drivers, due to the compact size and low weight, microturbines are attractive choice. In this paper, by using an energy-economic analysis the type and number of the required microturbines for the specific electricity and heat load curves during a year were selected. For performing this task an objective function annual profit (AP) was introduced and maximized. The operation strategy and the payback period of the chosen system was also determined in this study.

Suggested Citation

  • Sanaye, Sepehr & Ardali, Moslem Raessi, 2009. "Estimating the power and number of microturbines in small-scale combined heat and power systems," Applied Energy, Elsevier, vol. 86(6), pages 895-903, June.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:6:p:895-903
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00281-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alanne, Kari & Saari, Arto, 2004. "Sustainable small-scale CHP technologies for buildings: the basis for multi-perspective decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(5), pages 401-431, October.
    2. Onovwiona, H.I. & Ugursal, V.I., 2006. "Residential cogeneration systems: review of the current technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(5), pages 389-431, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mago, Pedro J. & Luck, Rogelio, 2013. "Evaluation of the potential use of a combined micro-turbine organic Rankine cycle for different geographic locations," Applied Energy, Elsevier, vol. 102(C), pages 1324-1333.
    2. Jianfei Shen & Fengyun Li & Di Shi & Hongze Li & Xinhua Yu, 2018. "Factors Affecting the Economics of Distributed Natural Gas-Combined Cooling, Heating and Power Systems in China: A Systematic Analysis Based on the Integrated Decision Making Trial and Evaluation Labo," Energies, MDPI, vol. 11(9), pages 1-28, September.
    3. Marcin Wołowicz & Piotr Kolasiński & Krzysztof Badyda, 2021. "Modern Small and Microcogeneration Systems—A Review," Energies, MDPI, vol. 14(3), pages 1-47, February.
    4. Duan, Jiandong & Liu, Junjie & Xiao, Qian & Fan, Shaogui & Sun, Li & Wang, Guanglin, 2019. "Cooperative controls of micro gas turbine and super capacitor hybrid power generation system for pulsed power load," Energy, Elsevier, vol. 169(C), pages 1242-1258.
    5. Basrawi, Firdaus & Ibrahim, Thamir K. & Habib, Khairul & Yamada, Takanobu & Daing Idris, Daing Mohamad Nafiz, 2017. "Techno-economic performance of biogas-fueled micro gas turbine cogeneration systems in sewage treatment plants: Effect of prime mover generation capacity," Energy, Elsevier, vol. 124(C), pages 238-248.
    6. Domenico Borello & Alessandro Corsini & Franco Rispoli & Eileen Tortora, 2013. "A Co-Powered Biomass and Concentrated Solar Power Rankine Cycle Concept for Small Size Combined Heat and Power Generation," Energies, MDPI, vol. 6(3), pages 1-19, March.
    7. Ebrahimi, Masood & Keshavarz, Ali, 2013. "Sizing the prime mover of a residential micro-combined cooling heating and power (CCHP) system by multi-criteria sizing method for different climates," Energy, Elsevier, vol. 54(C), pages 291-301.
    8. Ferreira, Ana C.M. & Nunes, Manuel L. & Teixeira, Senhorinha F.C.F. & Leão, Celina P. & Silva, Ângela M. & Teixeira, José C.F. & Martins, Luís A.S.B., 2012. "An economic perspective on the optimisation of a small-scale cogeneration system for the Portuguese scenario," Energy, Elsevier, vol. 45(1), pages 436-444.
    9. Zhu, Shunmin & Yu, Guoyao & O, Jongmin & Xu, Tao & Wu, Zhanghua & Dai, Wei & Luo, Ercang, 2018. "Modeling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 522-533.
    10. Murugan, S. & Horák, Bohumil, 2016. "A review of micro combined heat and power systems for residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 144-162.
    11. Marco F. Torchio, 2013. "Energy-Exergy, Environmental and Economic Criteria in Combined Heat and Power (CHP) Plants: Indexes for the Evaluation of the Cogeneration Potential," Energies, MDPI, vol. 6(5), pages 1-23, May.
    12. De Paepe, Ward & Delattin, Frank & Bram, Svend & De Ruyck, Jacques, 2013. "Water injection in a micro gas turbine – Assessment of the performance using a black box method," Applied Energy, Elsevier, vol. 112(C), pages 1291-1302.
    13. Sanaye, Sepehr & Khakpaay, Navid, 2014. "Simultaneous use of MRM (maximum rectangle method) and optimization methods in determining nominal capacity of gas engines in CCHP (combined cooling, heating and power) systems," Energy, Elsevier, vol. 72(C), pages 145-158.
    14. Jiang, Zhijie & Xu, Jingyuan & Yu, Guoyao & Yang, Rui & Wu, Zhanghua & Hu, Jianying & Zhang, Limin & Luo, Ercang, 2023. "A Stirling generator with multiple bypass expansion for variable-temperature waste heat recovery," Applied Energy, Elsevier, vol. 329(C).
    15. Rachtan, W. & Malinowski, L., 2013. "An approximate expression for part-load performance of a microturbine combined heat and power system heat recovery unit," Energy, Elsevier, vol. 51(C), pages 146-153.
    16. Gibson, Chanel Ann & Meybodi, Mehdi Aghaei & Behnia, Masud, 2013. "Optimisation and selection of a steam turbine for a large scale industrial CHP (combined heat and power) system under Australia's carbon price," Energy, Elsevier, vol. 61(C), pages 291-307.
    17. Lee, Hoseong & Bush, John & Hwang, Yunho & Radermacher, Reinhard, 2013. "Modeling of micro-CHP (combined heat and power) unit and evaluation of system performance in building application in United States," Energy, Elsevier, vol. 58(C), pages 364-375.
    18. Flórez-Orrego, Daniel & Albuquerque, Cyro & da Silva, Julio A.M. & Freire, Ronaldo Lucas Alkmin & de Oliveira Junior, Silvio, 2021. "Optimal design of power hubs for offshore petroleum platforms," Energy, Elsevier, vol. 235(C).
    19. Ershadi, Hamed & Karimipour, Arash, 2018. "Present a multi-criteria modeling and optimization (energy, economic and environmental) approach of industrial combined cooling heating and power (CCHP) generation systems using the genetic algorithm,," Energy, Elsevier, vol. 149(C), pages 286-295.
    20. Xu, Xiandong & Li, Kang & Qi, Fengyu & Jia, Hongjie & Deng, Jing, 2017. "Identification of microturbine model for long-term dynamic analysis of distribution networks," Applied Energy, Elsevier, vol. 192(C), pages 305-314.
    21. Duan, Jiandong & Fan, Shaogui & Wu, Fengjiang & Sun, Li & Wang, Guanglin, 2017. "Power balance control of micro gas turbine generation system based on supercapacitor energy storage," Energy, Elsevier, vol. 119(C), pages 442-452.
    22. Thu, Kyaw & Saha, Bidyut Baran & Chua, Kian Jon & Bui, Thuan Duc, 2016. "Thermodynamic analysis on the part-load performance of a microturbine system for micro/mini-CHP applications," Applied Energy, Elsevier, vol. 178(C), pages 600-608.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    2. Iacobescu, Flavius & Badescu, Viorel, 2011. "Metamorphoses of cogeneration-based district heating in Romania: A case study," Energy Policy, Elsevier, vol. 39(1), pages 269-280, January.
    3. Ferreira, Ana C. & Nunes, Manuel L. & Teixeira, José C.F. & Martins, Luís A.S.B. & Teixeira, Senhorinha F.C.F., 2016. "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, Elsevier, vol. 111(C), pages 1-17.
    4. Ferreira, Ana C.M. & Nunes, Manuel L. & Teixeira, Senhorinha F.C.F. & Leão, Celina P. & Silva, Ângela M. & Teixeira, José C.F. & Martins, Luís A.S.B., 2012. "An economic perspective on the optimisation of a small-scale cogeneration system for the Portuguese scenario," Energy, Elsevier, vol. 45(1), pages 436-444.
    5. Xu, Jianzhong & Sui, Jun & Li, Bingyu & Yang, Minlin, 2010. "Research, development and the prospect of combined cooling, heating, and power systems," Energy, Elsevier, vol. 35(11), pages 4361-4367.
    6. Zhao, X.L. & Fu, L. & Zhang, S.G. & Jiang, Y. & Li, H., 2010. "Performance improvement of a 70 kWe natural gas combined heat and power (CHP) system," Energy, Elsevier, vol. 35(4), pages 1848-1853.
    7. Sofia Boulmrharj & Mohammed Khaidar & Mohamed Bakhouya & Radouane Ouladsine & Mostapha Siniti & Khalid Zine-dine, 2020. "Performance Assessment of a Hybrid System with Hydrogen Storage and Fuel Cell for Cogeneration in Buildings," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
    8. Fragaki, Aikaterini & Andersen, Anders N. & Toke, David, 2008. "Exploration of economical sizing of gas engine and thermal store for combined heat and power plants in the UK," Energy, Elsevier, vol. 33(11), pages 1659-1670.
    9. González, Arnau & Riba, Jordi-Roger & Puig, Rita & Navarro, Pere, 2015. "Review of micro- and small-scale technologies to produce electricity and heat from Mediterranean forests׳ wood chips," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 143-155.
    10. Mertzis, Dimitrios & Mitsakis, Panagiotis & Tsiakmakis, Stefanos & Manara, Panagiota & Zabaniotou, Anastasia & Samaras, Zissis, 2014. "Performance analysis of a small-scale combined heat and power system using agricultural biomass residues: The SMARt-CHP demonstration project," Energy, Elsevier, vol. 64(C), pages 367-374.
    11. Thu, Kyaw & Saha, Bidyut Baran & Chua, Kian Jon & Bui, Thuan Duc, 2016. "Thermodynamic analysis on the part-load performance of a microturbine system for micro/mini-CHP applications," Applied Energy, Elsevier, vol. 178(C), pages 600-608.
    12. Gabriele Loreti & Andrea Luigi Facci & Stefano Ubertini, 2021. "High-Efficiency Combined Heat and Power through a High-Temperature Polymer Electrolyte Membrane Fuel Cell and Gas Turbine Hybrid System," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    13. Perry, Simon & Klemeš, Jiří & Bulatov, Igor, 2008. "Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors," Energy, Elsevier, vol. 33(10), pages 1489-1497.
    14. Daniel Cardoso & Daniel Nunes & João Faria & Paulo Fael & Pedro D. Gaspar, 2023. "Intelligent Micro-Cogeneration Systems for Residential Grids: A Sustainable Solution for Efficient Energy Management," Energies, MDPI, vol. 16(13), pages 1-21, July.
    15. Gonzalo Romero Garcia & Dora Villada Castillo & Jhan Piero Rojas, 2022. "A Complete Prefeasibility Evaluation of On-Site Energy Generation Systems," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 474-479, March.
    16. Li, Sheng & Sui, Jun & Jin, Hongguang & Zheng, Jianjiao, 2013. "Full chain energy performance for a combined cooling, heating and power system running with methanol and solar energy," Applied Energy, Elsevier, vol. 112(C), pages 673-681.
    17. Facci, Andrea L. & Cigolotti, Viviana & Jannelli, Elio & Ubertini, Stefano, 2017. "Technical and economic assessment of a SOFC-based energy system for combined cooling, heating and power," Applied Energy, Elsevier, vol. 192(C), pages 563-574.
    18. Brouwer, Anne Sjoerd & Kuramochi, Takeshi & van den Broek, Machteld & Faaij, André, 2013. "Fulfilling the electricity demand of electric vehicles in the long term future: An evaluation of centralized and decentralized power supply systems," Applied Energy, Elsevier, vol. 107(C), pages 33-51.
    19. Wang, Y. & Barde, A. & Jin, K. & Wirz, R.E., 2020. "System performance analyses of sulfur-based thermal energy storage," Energy, Elsevier, vol. 195(C).
    20. Fux, Samuel F. & Benz, Michael J. & Guzzella, Lino, 2013. "Economic and environmental aspects of the component sizing for a stand-alone building energy system: A case study," Renewable Energy, Elsevier, vol. 55(C), pages 438-447.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:6:p:895-903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.