IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v393y2025ics0306261925007676.html
   My bibliography  Save this article

Mixed logical dynamical modelling of renewable hydrogen refuelling stations for the design of optimization-based operational schemes

Author

Listed:
  • Cardona, P.
  • Valiño, L.
  • Ocampo-Martinez, C.
  • Serra, M.

Abstract

This paper proposes a Mixed Logical Dynamical (MLD) model for a real-world Hydrogen Refuelling Station (HRS) currently under development, incorporating on-site production, multi-pressure hydrogen storage, and discrete event-triggered refuelling processes. By modelling the HRS using the expanded linear state-space MLD formulation with linear inequality constraints, the model accommodates hydrogen flows, pressure thresholds, and discontinuous behaviour within this unified framework suitable for automatic control/decision-making purposes. To illustrate the usefulness of the proposed modelling approach, a preliminary Hybrid Model Predictive Control (HMPC) scheme and a Constraint Satisfaction Problem (CSP) formulation are proposed, leveraging the MLD structure for optimization-based control and feasibility validation in the face of unpredicted Fuel-Cell Electric Vehicle (FCEV) arrivals. The case of study simulation results highlight how the MLD model addresses the logical and event-triggered behaviours and constraints commonly neglected by aggregated models reported in scheduling-based approaches present in the gross body of literature concerning HRS operation. The implemented HMPC strategy and the CSP statement primarily demonstrate the model’s practical utility. These approaches also hint at their potential for developing advanced operational strategies—ranging from stochastic or multi-level control schemes to distributed architectures—and for deeper sizing analyses or performance assessments of real-world HRSs. Consequently, the proposed modelling approach provides a robust foundation for innovation in hydrogen infrastructure management, bridging essential gaps in the literature by integrating discrete logic decisions, multi-tank refuelling topologies, and online optimization under real operating constraints.

Suggested Citation

  • Cardona, P. & Valiño, L. & Ocampo-Martinez, C. & Serra, M., 2025. "Mixed logical dynamical modelling of renewable hydrogen refuelling stations for the design of optimization-based operational schemes," Applied Energy, Elsevier, vol. 393(C).
  • Handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925007676
    DOI: 10.1016/j.apenergy.2025.126037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925007676
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Förster, Robert & Kaiser, Matthias & Wenninger, Simon, 2023. "Future vehicle energy supply - sustainable design and operation of hybrid hydrogen and electric microgrids," Applied Energy, Elsevier, vol. 334(C).
    2. Wu, Xiong & Zhao, Wencheng & Li, Haoyu & Liu, Bingwen & Zhang, Ziyu & Wang, Xiuli, 2021. "Multi-stage stochastic programming based offering strategy for hydrogen fueling station in joint energy, reserve markets," Renewable Energy, Elsevier, vol. 180(C), pages 605-615.
    3. Liwen Zhu & Jun He & Lixun He & Wentao Huang & Yanyang Wang & Zong Liu, 2022. "Optimal Operation Strategy of PV-Charging-Hydrogenation Composite Energy Station Considering Demand Response," Energies, MDPI, vol. 15(16), pages 1-23, August.
    4. Apostolou, D. & Xydis, G., 2019. "A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johannes Full & Silja Hohmann & Sonja Ziehn & Edgar Gamero & Tobias Schließ & Hans-Peter Schmid & Robert Miehe & Alexander Sauer, 2023. "Perspectives of Biogas Plants as BECCS Facilities: A Comparative Analysis of Biomethane vs. Biohydrogen Production with Carbon Capture and Storage or Use (CCS/CCU)," Energies, MDPI, vol. 16(13), pages 1-16, June.
    2. Michail Cheliotis & Evangelos Boulougouris & Nikoletta L Trivyza & Gerasimos Theotokatos & George Livanos & George Mantalos & Athanasios Stubos & Emmanuel Stamatakis & Alexandros Venetsanos, 2021. "Review on the Safe Use of Ammonia Fuel Cells in the Maritime Industry," Energies, MDPI, vol. 14(11), pages 1-20, May.
    3. Tobias Mueller & Steven Gronau, 2023. "Fostering Macroeconomic Research on Hydrogen-Powered Aviation: A Systematic Literature Review on General Equilibrium Models," Energies, MDPI, vol. 16(3), pages 1-33, February.
    4. Huy, Truong Hoang Bao & Duy, Nguyen Thanh Minh & Phu, Pham Van & Le, Tien-Dat & Park, Seongkeun & Kim, Daehee, 2024. "Robust real-time energy management for a hydrogen refueling station using generative adversarial imitation learning," Applied Energy, Elsevier, vol. 373(C).
    5. Fragiacomo, Petronilla & Martorelli, Michele & Genovese, Matteo & Piraino, Francesco & Corigliano, Orlando, 2024. "Thermodynamic modelling, testing and sensitive analysis of a directly pressurized hydrogen refuelling process with a compressor," Renewable Energy, Elsevier, vol. 226(C).
    6. Siavashi, Majid & Hosseini, Farzad & Talesh Bahrami, Hamid Reza, 2021. "A new design with preheating and layered porous ceramic for hydrogen production through methane steam reforming process," Energy, Elsevier, vol. 231(C).
    7. Oda, Hiromu & Noguchi, Hiroki & Fuse, Masaaki, 2022. "Review of life cycle assessment for automobiles: A meta-analysis-based approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Guido Ala & Gabriella Di Filippo & Fabio Viola & Graziella Giglia & Antonino Imburgia & Pietro Romano & Vincenzo Castiglia & Filippo Pellitteri & Giuseppe Schettino & Rosario Miceli, 2020. "Different Scenarios of Electric Mobility: Current Situation and Possible Future Developments of Fuel Cell Vehicles in Italy," Sustainability, MDPI, vol. 12(2), pages 1-22, January.
    9. Qi, Yunying & Xu, Xiao & Liu, Youbo & Pan, Li & Liu, Junyong & Hu, Weihao, 2024. "Intelligent energy management for an on-grid hydrogen refueling station based on dueling double deep Q network algorithm with NoisyNet," Renewable Energy, Elsevier, vol. 222(C).
    10. Zhetao Chen & Hao Wang & Warren J. Barry & Marc J. Tuozzolo, 2025. "Multi-Criteria Decision-Making of Hybrid Energy Infrastructure for Fuel Cell and Battery Electric Buses," Energies, MDPI, vol. 18(11), pages 1-23, May.
    11. Lucian-Ioan Dulău, 2023. "Power Cost and CO 2 Emissions for a Microgrid with Hydrogen Storage and Electric Vehicles," Sustainability, MDPI, vol. 15(22), pages 1-25, November.
    12. Čović, Nikolina & Pavić, Ivan & Pandžić, Hrvoje, 2024. "Multi-energy balancing services provision from a hybrid power plant: PV, battery, and hydrogen technologies," Applied Energy, Elsevier, vol. 374(C).
    13. Carlo Cunanan & Manh-Kien Tran & Youngwoo Lee & Shinghei Kwok & Vincent Leung & Michael Fowler, 2021. "A Review of Heavy-Duty Vehicle Powertrain Technologies: Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles," Clean Technol., MDPI, vol. 3(2), pages 1-16, June.
    14. Fanyue Qian & Weijun Gao & Dan Yu & Yongwen Yang & Yingjun Ruan, 2022. "An Analysis of the Potential of Hydrogen Energy Technology on Demand Side Based on a Carbon Tax: A Case Study in Japan," Energies, MDPI, vol. 16(1), pages 1-23, December.
    15. Hunt, Julian David & Nascimento, Andreas & Nascimento, Nazem & Vieira, Lara Werncke & Romero, Oldrich Joel, 2022. "Possible pathways for oil and gas companies in a sustainable future: From the perspective of a hydrogen economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    16. Genovese, M. & Piraino, F. & Fragiacomo, P., 2024. "3E analysis of a virtual hydrogen valley supported by railway-based H2 delivery for multi-transportation service," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    17. Mohideen, Mohamedazeem M. & Liu, Yong & Ramakrishna, Seeram, 2020. "Recent progress of carbon dots and carbon nanotubes applied in oxygen reduction reaction of fuel cell for transportation," Applied Energy, Elsevier, vol. 257(C).
    18. Isaac, N. & Saha, A.K., 2021. "Analysis of refueling behavior of hydrogen fuel vehicles through a stochastic model using Markov Chain Process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    19. Matteo Genovese & Viviana Cigolotti & Elio Jannelli & Petronilla Fragiacomo, 2023. "Hydrogen Refueling Process: Theory, Modeling, and In-Force Applications," Energies, MDPI, vol. 16(6), pages 1-31, March.
    20. Panah, Payam Ghaebi & Bornapour, Mosayeb & Hemmati, Reza & Guerrero, Josep M., 2021. "Charging station Stochastic Programming for Hydrogen/Battery Electric Buses using Multi-Criteria Crow Search Algorithm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925007676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.