IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148123018001.html
   My bibliography  Save this article

Intelligent energy management for an on-grid hydrogen refueling station based on dueling double deep Q network algorithm with NoisyNet

Author

Listed:
  • Qi, Yunying
  • Xu, Xiao
  • Liu, Youbo
  • Pan, Li
  • Liu, Junyong
  • Hu, Weihao

Abstract

The development of hydrogen-based vehicles (HVs) can help achieve a zero-carbon future; however, the availability of hydrogen refueling stations (HRSs) prevents their widespread adoption as personal vehicles. Existing studies have investigated the energy management of HRSs using various methods. However, there have been no reports of implementing a deep reinforcement learning (DRL) approach to address these uncertainties and achieve real-time decision making. This study proposes an energy management optimization model of an on-grid HRS based on the improved dueling double deep Q network(D3QN) algorithm with NoisyNet. The primary goal is to reduce the cost of operating an HRS and improve voltage stability while satisfying the hydrogen demand of HVs. Notably, this study adopts an improved version of the double deep Q network (DDQN), that is, the NoisyNet-D3QN (NN-D3QN) approach, because NoisyNet can aid efficient exploration and the dueling network can generalize learning across actions. The adopted NN-D3QN algorithm has better performance than other basic algorithms. Compared with the NN-DDQN, D3QN, and DDQN approaches, the reward of the proposed method increases by 19.08 %, 31.66 %, and 39.26 %, respectively.

Suggested Citation

  • Qi, Yunying & Xu, Xiao & Liu, Youbo & Pan, Li & Liu, Junyong & Hu, Weihao, 2024. "Intelligent energy management for an on-grid hydrogen refueling station based on dueling double deep Q network algorithm with NoisyNet," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123018001
    DOI: 10.1016/j.renene.2023.119885
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123018001
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119885?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123018001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.