IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8451-d702603.html
   My bibliography  Save this article

A Review on Optimal Control for the Smart Grid Electrical Substation Enhancing Transition Stability

Author

Listed:
  • Wilson Pavon

    (Department of Electrical Engineering, Universidad Politécnica Salesiana, Quito EC170146, Ecuador)

  • Esteban Inga

    (Department of Electrical Engineering, Universidad Politécnica Salesiana, Quito EC170146, Ecuador)

  • Silvio Simani

    (Engineering Department, Università degli Studi di Ferrara, 050031 Ferrara, Italy)

  • Maddalena Nonato

    (Engineering Department, Università degli Studi di Ferrara, 050031 Ferrara, Italy)

Abstract

This paper is a research article for finding the optimal control of smart power substations for improving the network parameters and reliability. The included papers are the most essential and main studies in the field, which propose a different approach to reach the best performance in electrical power systems. The parameters for improvement are the ability for tracking of the reference signal, stabilizing the system, reducing the error in steady state and controlling the behavior in transient state. The research focuses with the reaching a better transient stability considering voltage and frequency dynamic parameters. The optimal model for the control is focused on minimizing energy consumption but maintaining the controllable parameters, exploring some optimization techniques to find the optimal control, with of aim of minimizing the response time, the energy consumption, and maximizing the reliability by means of improving the controller to be more robust.

Suggested Citation

  • Wilson Pavon & Esteban Inga & Silvio Simani & Maddalena Nonato, 2021. "A Review on Optimal Control for the Smart Grid Electrical Substation Enhancing Transition Stability," Energies, MDPI, vol. 14(24), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8451-:d:702603
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8451/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8451/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vitale, F. & Rispoli, N. & Sorrentino, M. & Rosen, M.A. & Pianese, C., 2021. "On the use of dynamic programming for optimal energy management of grid-connected reversible solid oxide cell-based renewable microgrids," Energy, Elsevier, vol. 225(C).
    2. Adrienn Dineva & Amir Mosavi & Sina Faizollahzadeh Ardabili & Istvan Vajda & Shahaboddin Shamshirband & Timon Rabczuk & Kwok-Wing Chau, 2019. "Review of Soft Computing Models in Design and Control of Rotating Electrical Machines," Energies, MDPI, vol. 12(6), pages 1-28, March.
    3. Adia Khalid & Sheraz Aslam & Khursheed Aurangzeb & Syed Irtaza Haider & Mahmood Ashraf & Nadeem Javaid, 2018. "An Efficient Energy Management Approach Using Fog-as-a-Service for Sharing Economy in a Smart Grid," Energies, MDPI, vol. 11(12), pages 1-17, December.
    4. Alagoz, B. Baykant & Kaygusuz, Asim & Akcin, Murat & Alagoz, Serkan, 2013. "A closed-loop energy price controlling method for real-time energy balancing in a smart grid energy market," Energy, Elsevier, vol. 59(C), pages 95-104.
    5. Bischi, Aldo & Taccari, Leonardo & Martelli, Emanuele & Amaldi, Edoardo & Manzolini, Giampaolo & Silva, Paolo & Campanari, Stefano & Macchi, Ennio, 2014. "A detailed MILP optimization model for combined cooling, heat and power system operation planning," Energy, Elsevier, vol. 74(C), pages 12-26.
    6. Wen, Lulu & Zhou, Kaile & Li, Jun & Wang, Shanyong, 2020. "Modified deep learning and reinforcement learning for an incentive-based demand response model," Energy, Elsevier, vol. 205(C).
    7. Colak, Ilhami & Kabalci, Ersan & Fulli, Gianluca & Lazarou, Stavros, 2015. "A survey on the contributions of power electronics to smart grid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 562-579.
    8. Stoppato, Anna & Cavazzini, Giovanna & Ardizzon, Guido & Rossetti, Antonio, 2014. "A PSO (particle swarm optimization)-based model for the optimal management of a small PV(Photovoltaic)-pump hydro energy storage in a rural dry area," Energy, Elsevier, vol. 76(C), pages 168-174.
    9. Bilal Naji Alhasnawi & Basil H. Jasim & Walid Issa & Amjad Anvari-Moghaddam & Frede Blaabjerg, 2020. "A New Robust Control Strategy for Parallel Operated Inverters in Green Energy Applications," Energies, MDPI, vol. 13(13), pages 1-31, July.
    10. Bingda Zhang & Yanjie Wu & Zhao Jin & Yang Wang, 2017. "A Real-Time Digital Solver for Smart Substation Based on Orders," Energies, MDPI, vol. 10(11), pages 1-16, November.
    11. Zhang, Yan & Meng, Fanlin & Wang, Rui & Kazemtabrizi, Behzad & Shi, Jianmai, 2019. "Uncertainty-resistant stochastic MPC approach for optimal operation of CHP microgrid," Energy, Elsevier, vol. 179(C), pages 1265-1278.
    12. Yang, Jun & Su, Changqi, 2021. "Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty," Energy, Elsevier, vol. 223(C).
    13. Jaume Miret & José Luís García de Vicuña & Ramón Guzmán & Antonio Camacho & Mohammad Moradi Ghahderijani, 2017. "A Flexible Experimental Laboratory for Distributed Generation Networks Based on Power Inverters," Energies, MDPI, vol. 10(10), pages 1-27, October.
    14. Guo, Chenyu & Wang, Xin & Zheng, Yihui & Zhang, Feng, 2022. "Real-time optimal energy management of microgrid with uncertainties based on deep reinforcement learning," Energy, Elsevier, vol. 238(PC).
    15. Mirakhorli, Amin & Dong, Bing, 2018. "Model predictive control for building loads connected with a residential distribution grid," Applied Energy, Elsevier, vol. 230(C), pages 627-642.
    16. Gomes, I.L.R. & Melicio, R. & Mendes, V.M.F., 2021. "A novel microgrid support management system based on stochastic mixed-integer linear programming," Energy, Elsevier, vol. 223(C).
    17. Marzal, Silvia & Salas, Robert & González-Medina, Raúl & Garcerá, Gabriel & Figueres, Emilio, 2018. "Current challenges and future trends in the field of communication architectures for microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3610-3622.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wilson Pavon & Esteban Inga & Silvio Simani & Matthew Armstrong, 2023. "Optimal Hierarchical Control for Smart Grid Inverters Using Stability Margin Evaluating Transient Voltage for Photovoltaic System," Energies, MDPI, vol. 16(5), pages 1-16, March.
    2. Marvin Lema & Wilson Pavon & Leony Ortiz & Ama Baduba Asiedu-Asante & Silvio Simani, 2022. "Controller Coordination Strategy for DC Microgrid Using Distributed Predictive Control Improving Voltage Stability," Energies, MDPI, vol. 15(15), pages 1-15, July.
    3. Francisco Durán & Wilson Pavón & Luis Ismael Minchala, 2024. "Forecast-Based Energy Management for Optimal Energy Dispatch in a Microgrid," Energies, MDPI, vol. 17(2), pages 1-21, January.
    4. Mohammed Said Jouda & Nihan Kahraman, 2022. "Improved Optimal Control of Transient Power Sharing in Microgrid Using H-Infinity Controller with Artificial Bee Colony Algorithm," Energies, MDPI, vol. 15(3), pages 1-26, January.
    5. Miroslaw Parol & Jacek Wasilewski & Tomasz Wojtowicz & Bartlomiej Arendarski & Przemyslaw Komarnicki, 2022. "Reliability Analysis of MV Electric Distribution Networks Including Distributed Generation and ICT Infrastructure," Energies, MDPI, vol. 15(14), pages 1-34, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Chenyu & Wang, Xin & Zheng, Yihui & Zhang, Feng, 2022. "Real-time optimal energy management of microgrid with uncertainties based on deep reinforcement learning," Energy, Elsevier, vol. 238(PC).
    2. Yang, Jingxian & Liu, Junyong & Qiu, Gao & Liu, Jichun & Jawad, Shafqat & Zhang, Shuai, 2023. "A spatio-temporality-enabled parallel multi-agent-based real-time dynamic dispatch for hydro-PV-PHS integrated power system," Energy, Elsevier, vol. 278(PB).
    3. Wang, Yijian & Cui, Yang & Li, Yang & Xu, Yang, 2023. "Collaborative optimization of multi-microgrids system with shared energy storage based on multi-agent stochastic game and reinforcement learning," Energy, Elsevier, vol. 280(C).
    4. Zhu, Ziqing & Hu, Ze & Chan, Ka Wing & Bu, Siqi & Zhou, Bin & Xia, Shiwei, 2023. "Reinforcement learning in deregulated energy market: A comprehensive review," Applied Energy, Elsevier, vol. 329(C).
    5. Bio Gassi, Karim & Baysal, Mustafa, 2023. "Improving real-time energy decision-making model with an actor-critic agent in modern microgrids with energy storage devices," Energy, Elsevier, vol. 263(PE).
    6. Romain Mannini & Julien Eynard & Stéphane Grieu, 2022. "A Survey of Recent Advances in the Smart Management of Microgrids and Networked Microgrids," Energies, MDPI, vol. 15(19), pages 1-37, September.
    7. Lingmin, Chen & Jiekang, Wu & Fan, Wu & Huiling, Tang & Changjie, Li & Yan, Xiong, 2020. "Energy flow optimization method for multi-energy system oriented to combined cooling, heating and power," Energy, Elsevier, vol. 211(C).
    8. Yin, Linfei & Luo, Shikui & Ma, Chenxiao, 2021. "Expandable depth and width adaptive dynamic programming for economic smart generation control of smart grids," Energy, Elsevier, vol. 232(C).
    9. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Hannes Agabus, 2023. "Market Mechanisms and Trading in Microgrid Local Electricity Markets: A Comprehensive Review," Energies, MDPI, vol. 16(5), pages 1-52, February.
    10. Zhou, Yanting & Ma, Zhongjing & Zhang, Jinhui & Zou, Suli, 2022. "Data-driven stochastic energy management of multi energy system using deep reinforcement learning," Energy, Elsevier, vol. 261(PA).
    11. Siqin, Zhuoya & Niu, DongXiao & Wang, Xuejie & Zhen, Hao & Li, MingYu & Wang, Jingbo, 2022. "A two-stage distributionally robust optimization model for P2G-CCHP microgrid considering uncertainty and carbon emission," Energy, Elsevier, vol. 260(C).
    12. Bilal Naji Alhasnawi & Basil H. Jasim & Walid Issa & Amjad Anvari-Moghaddam & Frede Blaabjerg, 2020. "A New Robust Control Strategy for Parallel Operated Inverters in Green Energy Applications," Energies, MDPI, vol. 13(13), pages 1-31, July.
    13. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Matija Kostelac & Lin Herenčić & Tomislav Capuder, 2022. "Planning and Operational Aspects of Individual and Clustered Multi-Energy Microgrid Options," Energies, MDPI, vol. 15(4), pages 1-17, February.
    15. Vanchinathan Kumarasamy & Valluvan KarumanchettyThottam Ramasamy & Gokul Chandrasekaran & Gnanavel Chinnaraj & Padhmanabhaiyappan Sivalingam & Neelam Sanjeev Kumar, 2023. "A review of integer order PID and fractional order PID controllers using optimization techniques for speed control of brushless DC motor drive," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 1139-1150, August.
    16. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
    17. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    18. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    19. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    20. Hui Wang & Yao Xu, 2024. "Optimized Decision-Making for Multi-Market Green Power Transactions of Electricity Retailers under Demand-Side Response: The Chinese Market Case Study," Energies, MDPI, vol. 17(11), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8451-:d:702603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.