IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v392y2025ics0306261925006385.html

A data-physics hybrid-driven layout optimization framework for large-scale wind farms

Author

Listed:
  • Li, Peiyi
  • Che, Yanbo
  • Hua, Anran
  • Wang, Lei
  • Zheng, Mengxiang
  • Guo, Xiaojiang

Abstract

The global trend of wind energy utilization moves towards building large-scale and remotely-located wind farms, while strategic layout optimization is crucial to improving the power generation of wind farms. However, large-scale wind farm layout optimization (WFLO) faces challenges due to complicated calculations involving the high-dimensional decision variables and the need to trade-off between wake model accuracy and efficiency. To address these issues, this paper proposes a novel data-physics hybrid-driven framework for layout optimization of large-scale wind farms. This framework attempts to integrate physical equations with variable parameters to guide the modeling of wake effects and further facilitate the layout optimization process. Specifically, the physics-informed dual neural network (PIDNN) model is proposed to estimate the wind velocity. This model incorporates a variable thrust coefficient into the Navier–Stokes equations through dual neural networks. Moreover, the gene-targeted differential evolution (GTDE) algorithm is employed to optimize the wind farm layout, which is particularly designed for large-scale optimization problems. Simulation results demonstrate that the proposed PIDNN can estimate wake velocity effectively. Furthermore, the proposed optimization framework outperforms competing methods, achieving the highest power generation.

Suggested Citation

  • Li, Peiyi & Che, Yanbo & Hua, Anran & Wang, Lei & Zheng, Mengxiang & Guo, Xiaojiang, 2025. "A data-physics hybrid-driven layout optimization framework for large-scale wind farms," Applied Energy, Elsevier, vol. 392(C).
  • Handle: RePEc:eee:appene:v:392:y:2025:i:c:s0306261925006385
    DOI: 10.1016/j.apenergy.2025.125908
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925006385
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125908?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Park, Junyoung & Park, Jinkyoo, 2019. "Physics-induced graph neural network: An application to wind-farm power estimation," Energy, Elsevier, vol. 187(C).
    2. Kaldellis, John K. & Triantafyllou, Panagiotis & Stinis, Panagiotis, 2021. "Critical evaluation of Wind Turbines’ analytical wake models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Ti, Zilong & Deng, Xiao Wei & Yang, Hongxing, 2020. "Wake modeling of wind turbines using machine learning," Applied Energy, Elsevier, vol. 257(C).
    4. Yang, Kun & Deng, Xiaowei & Ti, Zilong & Yang, Shanghui & Huang, Senbin & Wang, Yuhang, 2023. "A data-driven layout optimization framework of large-scale wind farms based on machine learning," Renewable Energy, Elsevier, vol. 218(C).
    5. Li, Siyi & Zhang, Mingrui & Piggott, Matthew D., 2023. "End-to-end wind turbine wake modelling with deep graph representation learning," Applied Energy, Elsevier, vol. 339(C).
    6. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Abdelsalam, Ali M. & El-Shorbagy, M.A., 2018. "Optimization of wind turbines siting in a wind farm using genetic algorithm based local search," Renewable Energy, Elsevier, vol. 123(C), pages 748-755.
    8. Göçmen, Tuhfe & Laan, Paul van der & Réthoré, Pierre-Elouan & Diaz, Alfredo Peña & Larsen, Gunner Chr. & Ott, Søren, 2016. "Wind turbine wake models developed at the technical university of Denmark: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 752-769.
    9. Wu, Yan & Zhang, Shuai & Wang, Ruiqi & Wang, Yufei & Feng, Xiao, 2020. "A design methodology for wind farm layout considering cable routing and economic benefit based on genetic algorithm and GeoSteiner," Renewable Energy, Elsevier, vol. 146(C), pages 687-698.
    10. Zhang, Jincheng & Zhao, Xiaowei, 2022. "Wind farm wake modeling based on deep convolutional conditional generative adversarial network," Energy, Elsevier, vol. 238(PB).
    11. Chowdhury, Souma & Zhang, Jie & Messac, Achille & Castillo, Luciano, 2013. "Optimizing the arrangement and the selection of turbines for wind farms subject to varying wind conditions," Renewable Energy, Elsevier, vol. 52(C), pages 273-282.
    12. Wu, Xiawei & Hu, Weihao & Huang, Qi & Chen, Cong & Jacobson, Mark Z. & Chen, Zhe, 2020. "Optimizing the layout of onshore wind farms to minimize noise," Applied Energy, Elsevier, vol. 267(C).
    13. Ti, Zilong & Deng, Xiao Wei & Zhang, Mingming, 2021. "Artificial Neural Networks based wake model for power prediction of wind farm," Renewable Energy, Elsevier, vol. 172(C), pages 618-631.
    14. Liu, Yi & Wang, Ranpeng & Gu, Yin & Li, Congjian & Wang, Gangqiao, 2024. "Physics-inspired and data-driven two-stage deep learning approach for wind field reconstruction with experimental validation," Energy, Elsevier, vol. 298(C).
    15. Sun, Haiying & Qiu, Changyu & Lu, Lin & Gao, Xiaoxia & Chen, Jian & Yang, Hongxing, 2020. "Wind turbine power modelling and optimization using artificial neural network with wind field experimental data," Applied Energy, Elsevier, vol. 280(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moss, Coleman & Maulik, Romit & Iungo, Giacomo Valerio, 2024. "Augmenting insights from wind turbine data through data-driven approaches," Applied Energy, Elsevier, vol. 376(PA).
    2. Li, Rui & Zhang, Jincheng & Zhao, Xiaowei, 2022. "Dynamic wind farm wake modeling based on a Bilateral Convolutional Neural Network and high-fidelity LES data," Energy, Elsevier, vol. 258(C).
    3. Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    4. Purohit, Shantanu & Ng, E.Y.K. & Syed Ahmed Kabir, Ijaz Fazil, 2022. "Evaluation of three potential machine learning algorithms for predicting the velocity and turbulence intensity of a wind turbine wake," Renewable Energy, Elsevier, vol. 184(C), pages 405-420.
    5. Li, Siyi & Robert, Arnaud & Faisal, A. Aldo & Piggott, Matthew D., 2024. "Learning to optimise wind farms with graph transformers," Applied Energy, Elsevier, vol. 359(C).
    6. Zilong, Ti & Xiao Wei, Deng, 2022. "Layout optimization of offshore wind farm considering spatially inhomogeneous wave loads," Applied Energy, Elsevier, vol. 306(PA).
    7. Mian, H.H. & Machot, F.A. & Ullah, H. & Keprate, A. & Siddiqui, M.S., 2025. "Advances in computational intelligence for floating offshore wind turbines aerodynamics: Current state review and future potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 224(C).
    8. Yang, Kun & Zhang, Mingming & Yang, Shanghui & Song, Yuwei & Dong, Xinhui & Deng, Yanfei & Deng, Xiaowei, 2025. "Pareto frontier for multi-objective wind farm layout optimization balancing power production and turbine fatigue life," Renewable Energy, Elsevier, vol. 252(C).
    9. Yang, Shanghui & Deng, Xiaowei & Ti, Zilong & Yan, Bowen & Yang, Qingshan, 2022. "Cooperative yaw control of wind farm using a double-layer machine learning framework," Renewable Energy, Elsevier, vol. 193(C), pages 519-537.
    10. Göçmen, Tuhfe & Liew, Jaime & Kadoche, Elie & Dimitrov, Nikolay & Riva, Riccardo & Andersen, Søren Juhl & Lio, Alan W.H. & Quick, Julian & Réthoré, Pierre-Elouan & Dykes, Katherine, 2025. "Data-driven wind farm flow control and challenges towards field implementation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    11. Du, Qiuwan & Yang, Like & Li, Liangliang & Liu, Tianyuan & Zhang, Di & Xie, Yonghui, 2022. "Aerodynamic design and optimization of blade end wall profile of turbomachinery based on series convolutional neural network," Energy, Elsevier, vol. 244(PA).
    12. Warder, Simon C. & Piggott, Matthew D., 2025. "Mapping global offshore wind wake losses, layout optimisation potential, and climate change effects," Energy, Elsevier, vol. 331(C).
    13. Yang, Kun & Deng, Xiaowei & Ti, Zilong & Yang, Shanghui & Huang, Senbin & Wang, Yuhang, 2023. "A data-driven layout optimization framework of large-scale wind farms based on machine learning," Renewable Energy, Elsevier, vol. 218(C).
    14. Dong, Zhikun & Chen, Yaoran & Zhou, Dai & Su, Jie & Han, Zhaolong & Cao, Yong & Bao, Yan & Zhao, Feng & Wang, Rui & Zhao, Yongsheng & Xu, Yuwang, 2022. "The mean wake model and its novel characteristic parameter of H-rotor VAWTs based on random forest method," Energy, Elsevier, vol. 239(PE).
    15. Wang, Longyan & Luo, Wei & Xu, Jian & Xie, Junhang & Luo, Zhaohui & Tan, Andy C.C., 2022. "Comparative study of decentralized instantaneous and wind-interval-based controls for in-line two scale wind turbines," Renewable Energy, Elsevier, vol. 189(C), pages 1218-1233.
    16. Peng, Wangxuan & Li, Baoliang & Ge, Mingwei & Li, Xintao & Ding, Wei & Li, Bo, 2025. "Layout optimization for offshore wind farms considering both fatigue damage and power generation," Renewable Energy, Elsevier, vol. 246(C).
    17. Song, Mengyang & Huang, Jiancai & Shao, Xuqiang & Zhao, Shiao & Ma, Chenyu & Qi, Zaishan, 2025. "A three-dimensional dynamic wake prediction framework for multiple turbine operating states based on diffusion model," Energy, Elsevier, vol. 333(C).
    18. Pollini, Nicolò, 2022. "Topology optimization of wind farm layouts," Renewable Energy, Elsevier, vol. 195(C), pages 1015-1027.
    19. Li, Siyi & Zhang, Mingrui & Piggott, Matthew D., 2023. "End-to-end wind turbine wake modelling with deep graph representation learning," Applied Energy, Elsevier, vol. 339(C).
    20. Cao, Jiufa & Nyborg, Camilla Marie & Feng, Ju & Hansen, Kurt S. & Bertagnolio, Franck & Fischer, Andreas & Sørensen, Thomas & Shen, Wen Zhong, 2022. "A new multi-fidelity flow-acoustics simulation framework for wind farm application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:392:y:2025:i:c:s0306261925006385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.