The mean wake model and its novel characteristic parameter of H-rotor VAWTs based on random forest method
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.122456
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yuqing Bian & Jianwei Yang & Ming Li & Rushi Lan, 2013. "Automated Flare Prediction Using Extreme Learning Machine," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-7, December.
- Balduzzi, Francesco & Bianchini, Alessandro & Maleci, Riccardo & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Critical issues in the CFD simulation of Darrieus wind turbines," Renewable Energy, Elsevier, vol. 85(C), pages 419-435.
- Ti, Zilong & Deng, Xiao Wei & Yang, Hongxing, 2020. "Wake modeling of wind turbines using machine learning," Applied Energy, Elsevier, vol. 257(C).
- Lam, H.F. & Peng, H.Y., 2016. "Study of wake characteristics of a vertical axis wind turbine by two- and three-dimensional computational fluid dynamics simulations," Renewable Energy, Elsevier, vol. 90(C), pages 386-398.
- Tescione, G. & Ragni, D. & He, C. & Simão Ferreira, C.J. & van Bussel, G.J.W., 2014. "Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry," Renewable Energy, Elsevier, vol. 70(C), pages 47-61.
- Sina Shamsoddin & Fernando Porté-Agel, 2014. "Large Eddy Simulation of Vertical Axis Wind Turbine Wakes," Energies, MDPI, vol. 7(2), pages 1-23, February.
- Danao, Louis Angelo & Edwards, Jonathan & Eboibi, Okeoghene & Howell, Robert, 2014. "A numerical investigation into the influence of unsteady wind on the performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 116(C), pages 111-124.
- Zhang, Jincheng & Zhao, Xiaowei, 2020. "A novel dynamic wind farm wake model based on deep learning," Applied Energy, Elsevier, vol. 277(C).
- Borg, Michael & Collu, Maurizio & Kolios, Athanasios, 2014. "Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part II: Mooring line and structural dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1226-1234.
- Borg, Michael & Shires, Andrew & Collu, Maurizio, 2014. "Offshore floating vertical axis wind turbines, dynamics modelling state of the art. part I: Aerodynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1214-1225.
- Lam, H.F. & Peng, H.Y., 2017. "Development of a wake model for Darrieus-type straight-bladed vertical axis wind turbines and its application to micro-siting problems," Renewable Energy, Elsevier, vol. 114(PB), pages 830-842.
- Göçmen, Tuhfe & Laan, Paul van der & Réthoré, Pierre-Elouan & Diaz, Alfredo Peña & Larsen, Gunner Chr. & Ott, Søren, 2016. "Wind turbine wake models developed at the technical university of Denmark: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 752-769.
- Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhao, Yongsheng, 2020. "Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines," Applied Energy, Elsevier, vol. 260(C).
- Kjellin, J. & Bülow, F. & Eriksson, S. & Deglaire, P. & Leijon, M. & Bernhoff, H., 2011. "Power coefficient measurement on a 12 kW straight bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 36(11), pages 3050-3053.
- Sun, Haiying & Qiu, Changyu & Lu, Lin & Gao, Xiaoxia & Chen, Jian & Yang, Hongxing, 2020. "Wind turbine power modelling and optimization using artificial neural network with wind field experimental data," Applied Energy, Elsevier, vol. 280(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Saeed Salah & Husain R. Alsamamra & Jawad H. Shoqeir, 2022. "Exploring Wind Speed for Energy Considerations in Eastern Jerusalem-Palestine Using Machine-Learning Algorithms," Energies, MDPI, vol. 15(7), pages 1-16, April.
- Yan, Peiliang & Fan, Weijun & Zhang, Rongchun, 2023. "Predicting the NOx emissions of low heat value gas rich-quench-lean combustor via three integrated learning algorithms with Bayesian optimization," Energy, Elsevier, vol. 273(C).
- Li, Rui & Zhang, Jincheng & Zhao, Xiaowei, 2022. "Dynamic wind farm wake modeling based on a Bilateral Convolutional Neural Network and high-fidelity LES data," Energy, Elsevier, vol. 258(C).
- Zhang, Yagang & Zhang, Jinghui & Yu, Leyi & Pan, Zhiya & Feng, Changyou & Sun, Yiqian & Wang, Fei, 2022. "A short-term wind energy hybrid optimal prediction system with denoising and novel error correction technique," Energy, Elsevier, vol. 254(PC).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
- Cheng, Biyi & Du, Jianjun & Yao, Yingxue, 2022. "Machine learning methods to assist structure design and optimization of Dual Darrieus Wind Turbines," Energy, Elsevier, vol. 244(PA).
- Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- Hand, Brian & Cashman, Andrew, 2018. "Aerodynamic modeling methods for a large-scale vertical axis wind turbine: A comparative study," Renewable Energy, Elsevier, vol. 129(PA), pages 12-31.
- Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
- Lei, Hang & Zhou, Dai & Bao, Yan & Chen, Caiyong & Ma, Ning & Han, Zhaolong, 2017. "Numerical simulations of the unsteady aerodynamics of a floating vertical axis wind turbine in surge motion," Energy, Elsevier, vol. 127(C), pages 1-17.
- Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment," Renewable Energy, Elsevier, vol. 107(C), pages 373-385.
- Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2018. "Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades," Energy, Elsevier, vol. 165(PB), pages 1129-1148.
- Lam, H.F. & Peng, H.Y., 2017. "Measurements of the wake characteristics of co- and counter-rotating twin H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 131(C), pages 13-26.
- Franchina, N. & Kouaissah, O. & Persico, G. & Savini, M., 2022. "Three-dimensional modeling and investigation of the flow around a troposkein vertical axis wind turbine at different operating conditions," Renewable Energy, Elsevier, vol. 199(C), pages 368-381.
- Delafin, P.-L. & Nishino, T. & Kolios, A. & Wang, L., 2017. "Comparison of low-order aerodynamic models and RANS CFD for full scale 3D vertical axis wind turbines," Renewable Energy, Elsevier, vol. 109(C), pages 564-575.
- Yang, Kun & Deng, Xiaowei & Ti, Zilong & Yang, Shanghui & Huang, Senbin & Wang, Yuhang, 2023. "A data-driven layout optimization framework of large-scale wind farms based on machine learning," Renewable Energy, Elsevier, vol. 218(C).
- Lam, H.F. & Peng, H.Y., 2016. "Study of wake characteristics of a vertical axis wind turbine by two- and three-dimensional computational fluid dynamics simulations," Renewable Energy, Elsevier, vol. 90(C), pages 386-398.
- Li, Rui & Zhang, Jincheng & Zhao, Xiaowei, 2022. "Dynamic wind farm wake modeling based on a Bilateral Convolutional Neural Network and high-fidelity LES data," Energy, Elsevier, vol. 258(C).
- Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhao, Yongsheng, 2020. "Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines," Applied Energy, Elsevier, vol. 260(C).
- Yang, P. & Xiang, J. & Fang, F. & Pain, C.C., 2019. "A fidelity fluid-structure interaction model for vertical axis tidal turbines in turbulence flows," Applied Energy, Elsevier, vol. 236(C), pages 465-477.
- Peng, H.Y. & Liu, M.N. & Liu, H.J. & Lin, K., 2022. "Optimization of twin vertical axis wind turbines through large eddy simulations and Taguchi method," Energy, Elsevier, vol. 240(C).
- Chowdhury, Abdullah Mobin & Akimoto, Hiromichi & Hara, Yutaka, 2016. "Comparative CFD analysis of Vertical Axis Wind Turbine in upright and tilted configuration," Renewable Energy, Elsevier, vol. 85(C), pages 327-337.
- Huang, Ming & Ferreira, Carlos & Sciacchitano, Andrea & Scarano, Fulvio, 2022. "Wake scaling of actuator discs in different aspect ratios," Renewable Energy, Elsevier, vol. 183(C), pages 866-876.
- Tong, Guoqiang & Yang, Shengbing & Li, Yan & Feng, Fang, 2023. "Effects of blade tip flow on aerodynamic characteristics of straight-bladed vertical axis wind turbines," Energy, Elsevier, vol. 283(C).
More about this item
Keywords
Vertical axis wind turbine; Wake model; Wake analysis; Random forest; Feature importance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221027055. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.