IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v298y2024ics036054422401003x.html
   My bibliography  Save this article

Physics-inspired and data-driven two-stage deep learning approach for wind field reconstruction with experimental validation

Author

Listed:
  • Liu, Yi
  • Wang, Ranpeng
  • Gu, Yin
  • Li, Congjian
  • Wang, Gangqiao

Abstract

Accurate and reliable wind forecasts for urban blocks play a pivotal role in the construction of zero-energy communities by guiding the selection and placement of wind turbines and the aerodynamic design optimization of ducted openings. While relatively accurate wind fields are available based on numerical methods, their heavy computational cost and discontinuity make it necessary to explore an interactive and end-to-end method. In this study, we develop a physics-inspired and data-driven two-stage deep learning approach that can reconstruct complex wind fields precisely. The proposed method integrates a physical feature extraction model of the flow field with a sparse measurement data-driven error correction approach. In particular, a well-designed and well-trained flow field feature extraction model (original model) can preserve salient features of CFD modelling, while data-driven error correction techniques may harvest the uncertainty features and fill the remaining gaps between the original model predictions and the measured data. The proposed method is verified by a measured dataset from a community in Beijing. Experimental validation illustrates that the proposed algorithm successfully accomplishes wind field reconstruction in complex terrains using sparse datasets. We show that the proposed two-stage strategy exhibits significantly improved prediction results over the purely original method, with an average accuracy improvement of 47.17% and a maximum accuracy improvement of 72.59%. Overall, the proposed method delivers the potential in accurate wind field construction and urban wind energy forecasting.

Suggested Citation

  • Liu, Yi & Wang, Ranpeng & Gu, Yin & Li, Congjian & Wang, Gangqiao, 2024. "Physics-inspired and data-driven two-stage deep learning approach for wind field reconstruction with experimental validation," Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:energy:v:298:y:2024:i:c:s036054422401003x
    DOI: 10.1016/j.energy.2024.131230
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422401003X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131230?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:298:y:2024:i:c:s036054422401003x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.