IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v390y2025ics0306261925005483.html
   My bibliography  Save this article

Quantifying grid flexibility provision of virtual vehicle-to-vehicle energy sharing using statistically similar networks

Author

Listed:
  • Gan, Wei
  • Zhou, Yue
  • Wu, Jianzhong

Abstract

The rapid rise in electric vehicle (EV) adoption presents significant capacity challenges for power grids, but with effective charging management, EVs can also serve as flexible resources, underscoring the need for relevant innovative solutions. This paper proposes a virtual vehicle-to-vehicle (V-V2V) framework, enabling EVs to share energy with each other, either at public charging stations or home, as long as they are connected to the same distribution network. The framework eliminates the need for physical proximity and peer-to-peer matching seen in traditional V2V, enhancing grid flexibility and reducing capacity pressures by harmonizing EV charging with other demands and photovoltaic generation. To quantify the flexibility provision of the V-V2V framework, this paper implements and enhances the statistically similar networks method, where simulations are based on generated networks that share similar electrical and topological characteristics, rather than relying on a single network. Using graph theory, the method preserves statistical similarity in both electrical and topological features, along with their internal correlations, ensuring the practicality of the network simulations. To improve flexibility quantification accuracy, this paper introduces a bottom-up, high-granularity model of EV travel and plugging patterns that accounts for diverse user archetypes. Monte Carlo simulations are employed to provide a detailed analysis of travel and charging behaviors by categorizing EV users. The effectiveness of the proposed method is tested through numerical results using real-world UK distribution networks.

Suggested Citation

  • Gan, Wei & Zhou, Yue & Wu, Jianzhong, 2025. "Quantifying grid flexibility provision of virtual vehicle-to-vehicle energy sharing using statistically similar networks," Applied Energy, Elsevier, vol. 390(C).
  • Handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925005483
    DOI: 10.1016/j.apenergy.2025.125818
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925005483
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125818?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925005483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.