IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v389y2025ics030626192500532x.html
   My bibliography  Save this article

Harnessing anisotropy of phase change composites for taming thermal runaway and fast charging of lithium-ion batteries

Author

Listed:
  • Chakraborty, Anirban
  • Lee, Jooyoung
  • Yu, Choongho

Abstract

Regulating temperature uniformly below self-ignition point in lithium-ion battery (LIB) is paramount for optimal performance and to avert potential thermal runaways. Localized heat accumulations or hot spots underscore the need for effective thermal management, demanding a delicate balance between rapid heat expulsion to an external sink and limiting heat propagation between neighboring cells using interstitial sheets typically placed between cells. This study presents a novel strategy employing laminate composites with dual thermal conductivities (k): high kIn-plane for efficient heat expulsion and low kOut-of-plane to curb heat spread. The approach exploits laminate anisotropy to passively address the challenges of managing hot spots during fast charging and preventing thermal runaway propagation. High k composites, while prompt in heat transfer, can inadvertently trigger thermal runaway by propagating heat to neighboring cells. Conversely, low k composite hinder dispersion, causing severe heat accumulation. The proposed dual k approach strikes a balance, optimizing heat dissipation to a sink while restricting heat propagation between the cells. Expanded graphite promotes the in-plane thermal conduction while air gap in between reduces the out-of-plane heat conduction. Our results suggest that interstitial composites with high anisotropy whose kIn-plane and kOut-of-plane are 30 and 0.5 W·m−1·K−1, respectively, could mitigate thermal runaway propagation, maintaining the surface of adjacent cells below the self-ignition temperature of 200 °C. Our findings underscore the importance of customizing the thermal properties of interstitial materials to efficiently balance heat transfer in LIBs, especially under abuse conditions. This customization is vital for enhancing the thermal management and overall safety of these battery systems. The proposed approach contributes to the safe and reliable deployment of LIBs across diverse applications.

Suggested Citation

  • Chakraborty, Anirban & Lee, Jooyoung & Yu, Choongho, 2025. "Harnessing anisotropy of phase change composites for taming thermal runaway and fast charging of lithium-ion batteries," Applied Energy, Elsevier, vol. 389(C).
  • Handle: RePEc:eee:appene:v:389:y:2025:i:c:s030626192500532x
    DOI: 10.1016/j.apenergy.2025.125802
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192500532X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125802?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jiangqiu & He, Xiangming, 2016. "A 3D thermal runaway propagation model for a large format lithium ion battery module," Energy, Elsevier, vol. 115(P1), pages 194-208.
    2. Diouf, Boucar & Pode, Ramchandra, 2015. "Potential of lithium-ion batteries in renewable energy," Renewable Energy, Elsevier, vol. 76(C), pages 375-380.
    3. Zhang, Xinghui & Li, Zhao & Luo, Lingai & Fan, Yilin & Du, Zhengyu, 2022. "A review on thermal management of lithium-ion batteries for electric vehicles," Energy, Elsevier, vol. 238(PA).
    4. Cheng, Gong & Wang, Zhangzhou & Wang, Xinzhi & He, Yurong, 2022. "All-climate thermal management structure for batteries based on expanded graphite/polymer composite phase change material with a high thermal and electrical conductivity," Applied Energy, Elsevier, vol. 322(C).
    5. Murali, G. & Sravya, G.S.N. & Jaya, J. & Naga Vamsi, V., 2021. "A review on hybrid thermal management of battery packs and it's cooling performance by enhanced PCM," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Yangying Zhu & Jin Xie & Allen Pei & Bofei Liu & Yecun Wu & Dingchang Lin & Jun Li & Hansen Wang & Hao Chen & Jinwei Xu & Ankun Yang & Chun-Lan Wu & Hongxia Wang & Wei Chen & Yi Cui, 2019. "Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    7. Menale, Carla & D'Annibale, Francesco & Mazzarotta, Barbara & Bubbico, Roberto, 2019. "Thermal management of lithium-ion batteries: An experimental investigation," Energy, Elsevier, vol. 182(C), pages 57-71.
    8. Ling, Ziye & Wen, Xiaoyan & Zhang, Zhengguo & Fang, Xiaoming & Gao, Xuenong, 2018. "Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures," Energy, Elsevier, vol. 144(C), pages 977-983.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ostanek, Jason K. & Li, Weisi & Mukherjee, Partha P. & Crompton, K.R. & Hacker, Christopher, 2020. "Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model," Applied Energy, Elsevier, vol. 268(C).
    2. Ma, Ying & Wei, Rongrong & Zuo, Hongyan & Zuo, Qingsong & Luo, Xiaoyu & Chen, Ying & Wu, Shuying & Chen, Wei, 2024. "N-doped EG@MOFs derived porous carbon composite phase change materials for thermal optimization of Li-ion batteries at low temperature," Energy, Elsevier, vol. 286(C).
    3. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Li, Xiaolin & Wang, Jun & Wu, Zhiwei & Cao, Wenxiang & Zhang, Xuesong, 2024. "An energy saving strategy on the composite phase change material and spiral liquid cooling channel for battery thermal management," Renewable Energy, Elsevier, vol. 227(C).
    5. Fan, Zhaohui & Gao, Renjing & Liu, Shutian, 2022. "Thermal conductivity enhancement and thermal saturation elimination designs of battery thermal management system for phase change materials based on triply periodic minimal surface," Energy, Elsevier, vol. 259(C).
    6. Yang, Huizhu & Li, Mingxuan & Wang, Zehui & Ma, Binjian, 2023. "A compact and lightweight hybrid liquid cooling system coupling with Z-type cold plates and PCM composite for battery thermal management," Energy, Elsevier, vol. 263(PE).
    7. Ma, Wenbin & Yang, Xiaoyu & Tao, Xin & Xie, Song, 2024. "The effect of low-temperature starting on the thermal safety of lithium-ion batteries," Energy, Elsevier, vol. 311(C).
    8. Solai, Elie & Guadagnini, Maxime & Beaugendre, Héloïse & Daccord, Rémi & Congedo, Pietro, 2022. "Validation of a data-driven fast numerical model to simulate the immersion cooling of a lithium-ion battery pack," Energy, Elsevier, vol. 249(C).
    9. Guo, Zengjia & Xu, Qidong & Wang, Yang & Zhao, Tianshou & Ni, Meng, 2023. "Battery thermal management system with heat pipe considering battery aging effect," Energy, Elsevier, vol. 263(PE).
    10. Wahab, Abdul & Najmi, Aezid-Ul-Hassan & Senobar, Hossein & Amjady, Nima & Kemper, Hans & Khayyam, Hamid, 2025. "Immersion cooling innovations and critical hurdles in Li-ion battery cooling for future electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    11. Jiang, Le & Zhang, Hengyun & Li, Junwei & Xia, Peng, 2019. "Thermal performance of a cylindrical battery module impregnated with PCM composite based on thermoelectric cooling," Energy, Elsevier, vol. 188(C).
    12. Raijmakers, L.H.J. & Danilov, D.L. & Eichel, R.-A. & Notten, P.H.L., 2019. "A review on various temperature-indication methods for Li-ion batteries," Applied Energy, Elsevier, vol. 240(C), pages 918-945.
    13. Zhang, Weitao & Sun, Qichao & Zhou, Xin & Wu, Lianying & Hu, Yangdong, 2024. "Investigation on the thermal behavior of thermal management system for battery pack with heat pipe based on multiphysics coupling model," Energy, Elsevier, vol. 308(C).
    14. Liu, Xun & Zhang, Chen-Feng & Zhou, Jian-Gang & Xiong, Xin & Wang, Yi-Ping, 2022. "Thermal performance of battery thermal management system using fins to enhance the combination of thermoelectric Cooler and phase change Material," Applied Energy, Elsevier, vol. 322(C).
    15. Yin, Shubin & Zhao, Wei & Tang, Yong & Li, Hongming & Huang, Haoyi & Ji, Wei & Zhang, Shiwei, 2024. "Ultra-thin vapour chamber based heat dissipation technology for lithium-ion battery," Applied Energy, Elsevier, vol. 358(C).
    16. Zhang, Zhendong & Kong, Xiangdong & Zheng, Yuejiu & Zhou, Long & Lai, Xin, 2019. "Real-time diagnosis of micro-short circuit for Li-ion batteries utilizing low-pass filters," Energy, Elsevier, vol. 166(C), pages 1013-1024.
    17. Di Giorgio, Paolo & Di Ilio, Giovanni & Jannelli, Elio & Conte, Fiorentino Valerio, 2022. "Innovative battery thermal management system based on hydrogen storage in metal hydrides for fuel cell hybrid electric vehicles," Applied Energy, Elsevier, vol. 315(C).
    18. Cai, Fengyang & Chang, Huawei & Yang, Zhengbo & Tu, Zhengkai, 2024. "Experimental study on self-heating strategy of lithium-ion battery at low temperatures based on bidirectional pulse current," Applied Energy, Elsevier, vol. 354(PB).
    19. Lipeng Xu & Chongwang Tian & Chunjiang Bao & Jinsheng Zhao & Xuning Leng, 2023. "Improving the Electrochemical Performance of Core–Shell LiNi 0.8 Co 0.1 Mn 0.1 O 2 Cathode Materials Using Environmentally Friendly Phase Structure Control Process," Energies, MDPI, vol. 16(10), pages 1-17, May.
    20. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:389:y:2025:i:c:s030626192500532x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.