Author
Listed:
- Chakraborty, Anirban
- Lee, Jooyoung
- Yu, Choongho
Abstract
Regulating temperature uniformly below self-ignition point in lithium-ion battery (LIB) is paramount for optimal performance and to avert potential thermal runaways. Localized heat accumulations or hot spots underscore the need for effective thermal management, demanding a delicate balance between rapid heat expulsion to an external sink and limiting heat propagation between neighboring cells using interstitial sheets typically placed between cells. This study presents a novel strategy employing laminate composites with dual thermal conductivities (k): high kIn-plane for efficient heat expulsion and low kOut-of-plane to curb heat spread. The approach exploits laminate anisotropy to passively address the challenges of managing hot spots during fast charging and preventing thermal runaway propagation. High k composites, while prompt in heat transfer, can inadvertently trigger thermal runaway by propagating heat to neighboring cells. Conversely, low k composite hinder dispersion, causing severe heat accumulation. The proposed dual k approach strikes a balance, optimizing heat dissipation to a sink while restricting heat propagation between the cells. Expanded graphite promotes the in-plane thermal conduction while air gap in between reduces the out-of-plane heat conduction. Our results suggest that interstitial composites with high anisotropy whose kIn-plane and kOut-of-plane are 30 and 0.5 W·m−1·K−1, respectively, could mitigate thermal runaway propagation, maintaining the surface of adjacent cells below the self-ignition temperature of 200 °C. Our findings underscore the importance of customizing the thermal properties of interstitial materials to efficiently balance heat transfer in LIBs, especially under abuse conditions. This customization is vital for enhancing the thermal management and overall safety of these battery systems. The proposed approach contributes to the safe and reliable deployment of LIBs across diverse applications.
Suggested Citation
Chakraborty, Anirban & Lee, Jooyoung & Yu, Choongho, 2025.
"Harnessing anisotropy of phase change composites for taming thermal runaway and fast charging of lithium-ion batteries,"
Applied Energy, Elsevier, vol. 389(C).
Handle:
RePEc:eee:appene:v:389:y:2025:i:c:s030626192500532x
DOI: 10.1016/j.apenergy.2025.125802
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:389:y:2025:i:c:s030626192500532x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.