IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v389y2025ics0306261925004726.html
   My bibliography  Save this article

Customer-centric meso-level planning for electric vehicle charger distribution

Author

Listed:
  • Karmaker, Ashish Kumar
  • Sturmberg, Bjorn
  • Behrens, Sam
  • Pota, Hemanshu Roy

Abstract

This paper presents a framework for the meso-level planning of electric vehicle (EV) charger distribution, addressing customer-level plugin uncertainties and regional variations. To bridge the gap between nationwide macro-level targets and localized micro-level plans, a meso-level approach is essential, considering regional diversity, market dynamics, and customer-centric factors. To address these limitations in meso-level planning, this paper proposes a customer-segmentation approach coupled with a probabilistic Monte Carlo Simulation to identify charger requirements in the cities across the Australian capital. This paper employs a K-means clustering algorithm to classify EV customers, leveraging prioritized features derived from a Random Forest Classifier based on available models in regional markets. Regional uncertainties in EV plug-in behaviors are collected from Australian scenarios to capture the inherent variability in charging patterns and accurately reflect the local demographics influencing EV adoption and usage. The results indicate the need for installing 1239 regular and 235 fast-charging ports, with a projected 29.53 % increase in charging ports by 2040 due to population and vehicle sales growth. Additionally, comparing with existing reports reveals that neglecting customer plugin behaviors and vehicle types can lead to an inaccurate estimation of charger requirements, resulting in significant investment losses. The findings underscore the importance of incorporating customer segmentation and regional variations into EV infrastructure planning to optimize resource allocation without costly mismatches.

Suggested Citation

  • Karmaker, Ashish Kumar & Sturmberg, Bjorn & Behrens, Sam & Pota, Hemanshu Roy, 2025. "Customer-centric meso-level planning for electric vehicle charger distribution," Applied Energy, Elsevier, vol. 389(C).
  • Handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004726
    DOI: 10.1016/j.apenergy.2025.125742
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925004726
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125742?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ceballos, Francisco & Le, Ly & Soneja, Payal & de Brauw, Alan, 2024. "Description of MSME Survey in Viet Nam," CGIAR Initative Publications Sustainable Healthy Diets, International Food Policy Research Institute (IFPRI).
    2. Andrenacci, N. & Ragona, R. & Valenti, G., 2016. "A demand-side approach to the optimal deployment of electric vehicle charging stations in metropolitan areas," Applied Energy, Elsevier, vol. 182(C), pages 39-46.
    3. Zanvettor, Giovanni Gino & Fochesato, Marta & Casini, Marco & Lygeros, John & Vicino, Antonio, 2024. "A stochastic approach for EV charging stations in demand response programs," Applied Energy, Elsevier, vol. 373(C).
    4. Mostafa Mahdy & AbuBakr S. Bahaj & Philip Turner & Naomi Wise & Abdulsalam S. Alghamdi & Hidab Hamwi, 2022. "Multi Criteria Decision Analysis to Optimise Siting of Electric Vehicle Charging Points—Case Study Winchester District, UK," Energies, MDPI, vol. 15(7), pages 1-16, March.
    5. Doorga, Jay R.S. & Hall, Jim W. & Eyre, Nick, 2022. "Geospatial multi-criteria analysis for identifying optimum wind and solar sites in Africa: Towards effective power sector decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Loni, Abdolah & Asadi, Somayeh, 2023. "Data-driven equitable placement for electric vehicle charging stations: Case study San Francisco," Energy, Elsevier, vol. 282(C).
    7. Yinheng Li & Shaofei Wang & Han Ding & Hang Chen, 2023. "Large Language Models in Finance: A Survey," Papers 2311.10723, arXiv.org, revised Jul 2024.
    8. Yuan, Hong & Ma, Minda & Zhou, Nan & Xie, Hui & Ma, Zhili & Xiang, Xiwang & Ma, Xin, 2024. "Battery electric vehicle charging in China: Energy demand and emissions trends in the 2020s," Applied Energy, Elsevier, vol. 365(C).
    9. Mukherjee, Sanghamitra Chattopadhyay & Ryan, Lisa, 2020. "Factors influencing early battery electric vehicle adoption in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    10. Torkey, Alaa & Abdelgawad, Hossam, 2022. "Framework for planning of EV charging infrastructure: Where should cities start?," Transport Policy, Elsevier, vol. 128(C), pages 193-208.
    11. He, Sylvia Y. & Kuo, Yong-Hong & Sun, Ka Kit, 2022. "The spatial planning of public electric vehicle charging infrastructure in a high-density city using a contextualised location-allocation model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 21-44.
    12. Ferdaus, Md Meftahul & Dam, Tanmoy & Anavatti, Sreenatha & Das, Sarobi, 2024. "Digital technologies for a net-zero energy future: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    13. Woo, Hyeon & Son, Yongju & Cho, Jintae & Kim, Sung-Yul & Choi, Sungyun, 2023. "Optimal expansion planning of electric vehicle fast charging stations," Applied Energy, Elsevier, vol. 342(C).
    14. Soomauroo, Zakia & Blechinger, Philipp & Creutzig, Felix, 2023. "Electrifying public transit benefits public finances in small island developing states," Transport Policy, Elsevier, vol. 138(C), pages 45-59.
    15. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pichamon Keawthong & Veera Muangsin & Chupun Gowanit, 2022. "Location Selection of Charging Stations for Electric Taxis: A Bangkok Case," Sustainability, MDPI, vol. 14(17), pages 1-23, September.
    2. Torkey, Alaa & Abdelgawad, Hossam, 2022. "Framework for planning of EV charging infrastructure: Where should cities start?," Transport Policy, Elsevier, vol. 128(C), pages 193-208.
    3. Wang, Zhichao & Guo, Zhaomiao & Liu, Kai & Lin, Zhenhong & Li, Shunxi, 2024. "Multi-stage layout strategies of intercity charging and swapping infrastructure for electric logistics vehicles: random, radical, or conservative?," Transport Policy, Elsevier, vol. 153(C), pages 12-23.
    4. Wu, Jiabin & Li, Qihang & Bie, Yiming & Zhou, Wei, 2024. "Location-routing optimization problem for electric vehicle charging stations in an uncertain transportation network: An adaptive co-evolutionary clustering algorithm," Energy, Elsevier, vol. 304(C).
    5. Ulrike Illmann & Jan Kluge, 2021. "Halb voll oder halb leer? Zur Bedeutung flächendeckender öffentlicher Ladeinfrastruktur für die Entwicklung der Elektromobilität," ifo Dresden berichtet, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 28(05), pages 10-17, October.
    6. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    7. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    8. Natascia Andrenacci & Roberto Ragona & Antonino Genovese, 2020. "Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario," Energies, MDPI, vol. 13(11), pages 1-19, May.
    9. Natascia Andrenacci & Antonino Genovese & Giancarlo Giuli, 2025. "Strategies for Workplace EV Charging Management," Energies, MDPI, vol. 18(2), pages 1-32, January.
    10. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2020. "Location optimisation method for fast-charging stations along national roads," Journal of Transport Geography, Elsevier, vol. 88(C).
    11. Zhigao Liao & Yufeng Bai & Kerong Jian & Wongvanichtawee Chalermkiat, 2024. "The Spatial Spillover Effect and Mechanism of Carbon Emission Trading Policy on Pollution Reduction and Carbon Reduction: Evidence from the Pearl River–West River Economic Belt in China," Sustainability, MDPI, vol. 16(23), pages 1-25, November.
    12. Benoliel, Peter & Taylor, Margaret & Coburn, Timothy & Desai, Ranjit R. & Schey, Stephen & Gerdes, Mindy & Peng, Peng, 2025. "Soft costs and EVSE – Knowledge gaps as a barrier to successful projects," Applied Energy, Elsevier, vol. 389(C).
    13. Ding, Yanyan & Jian, Sisi & Yu, Lin, 2025. "How to reduce carbon emissions in the urban transportation systems through carbon markets? Balancing the monetary and environmental benefits," Applied Energy, Elsevier, vol. 377(PB).
    14. Panagiotis Skaloumpakas & Evangelos Spiliotis & Elissaios Sarmas & Alexios Lekidis & George Stravodimos & Dimitris Sarigiannis & Ioanna Makarouni & Vangelis Marinakis & John Psarras, 2022. "A Multi-Criteria Approach for Optimizing the Placement of Electric Vehicle Charging Stations in Highways," Energies, MDPI, vol. 15(24), pages 1-13, December.
    15. Oluwasola O. Ademulegun & Paul MacArtain & Bukola Oni & Neil J. Hewitt, 2022. "Multi-Stage Multi-Criteria Decision Analysis for Siting Electric Vehicle Charging Stations within and across Border Regions," Energies, MDPI, vol. 15(24), pages 1-28, December.
    16. Secinaro, Silvana & Calandra, Davide & Lanzalonga, Federico & Ferraris, Alberto, 2022. "Electric vehicles’ consumer behaviours: Mapping the field and providing a research agenda," Journal of Business Research, Elsevier, vol. 150(C), pages 399-416.
    17. Shuping Wu & Zan Yang, 2020. "Availability of Public Electric Vehicle Charging Pile and Development of Electric Vehicle: Evidence from China," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    18. Eazaz Sadeghvaziri & Ramina Javid & Hananeh Omidi & Mahmoud Arafat, 2024. "A Machine Learning Approach to Understanding Sociodemographic Factors in Electric Vehicle Ownership in the U.S," Sustainability, MDPI, vol. 16(23), pages 1-17, November.
    19. Ghani, R. & Farjah, E., 2025. "A two-stage approach for determination of optimal size and site of distributed generations and charging stations in the distribution system, considering load growth and the electric vehicle penetratio," Energy, Elsevier, vol. 319(C).
    20. Sanghamitra Mukherjee & Séin Healy & Tensay Meles & L. (Lisa B.) Ryan & Robert Mooney & Lindsay Sharpe & Paul Hayes, 2020. "Renewable Energy Technology Uptake: Public Preferences and Policy Design in Early Adoption," Working Papers 202004, School of Economics, University College Dublin.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.