IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v383y2025ics0306261924026497.html
   My bibliography  Save this article

Strategic bidding of wind farms in medium-to-long-term rolling transactions: A bi-level multi-agent deep reinforcement learning approach

Author

Listed:
  • Zheng, Yi
  • Wang, Jian
  • Wang, Chengmin
  • Huang, Chunyi
  • Yang, Jingfei
  • Xie, Ning

Abstract

The increasing penetration of renewable energy in the electricity market suppresses marginal prices, posing profitability challenges for wind power producers. To address this, effective medium-to-long-term (MLT) rolling transactions can hedge against spot market price risks and improve profitability. However, conventional bidding approaches often fail to capture the intricate uncertainties associated with wind generation and trading dynamics over extended periods. This paper introduces a bi-level multi-agent deep reinforcement learning (DRL) approach specifically designed for optimizing wind energy MLT rolling transactions. The proposed method innovatively integrates the Black–Scholes model with the Hamiltonian function to structure an optimal decision-making framework that balances short-term bidding efficiency with long-term strategic positioning. By separately optimizing transaction quantities and prices, the model prevents conflicts between these variables and ensures more accurate and effective decision-making. Additionally, the approach leverages advanced spatiotemporal modeling capabilities through the TimesNet-Latent-GNN framework, enabling it to capture complex market dependencies and achieve superior performance in managing price risks and maximizing profitability. Validation using real-world transaction data from the Shanxi electricity market demonstrates that the proposed method significantly outperforms traditional risk-averse strategies in terms of profitability and risk mitigation.

Suggested Citation

  • Zheng, Yi & Wang, Jian & Wang, Chengmin & Huang, Chunyi & Yang, Jingfei & Xie, Ning, 2025. "Strategic bidding of wind farms in medium-to-long-term rolling transactions: A bi-level multi-agent deep reinforcement learning approach," Applied Energy, Elsevier, vol. 383(C).
  • Handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261924026497
    DOI: 10.1016/j.apenergy.2024.125265
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924026497
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125265?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheikhahmadi, P. & Bahramara, S. & Moshtagh, J. & Yazdani Damavandi, M., 2018. "A risk-based approach for modeling the strategic behavior of a distribution company in wholesale energy market," Applied Energy, Elsevier, vol. 214(C), pages 24-38.
    2. Severin Borenstein & James Bushnell & Christopher R. Knittel & Catherine Wolfram, 2008. "Inefficiencies And Market Power In Financial Arbitrage: A Study Of California'S Electricity Markets," Journal of Industrial Economics, Wiley Blackwell, vol. 56(2), pages 347-378, June.
    3. Silva, Ana R. & Pousinho, H.M.I. & Estanqueiro, Ana, 2022. "A multistage stochastic approach for the optimal bidding of variable renewable energy in the day-ahead, intraday and balancing markets," Energy, Elsevier, vol. 258(C).
    4. Izanloo, Milad & Aslani, Alireza & Zahedi, Rahim, 2022. "Development of a Machine learning assessment method for renewable energy investment decision making," Applied Energy, Elsevier, vol. 327(C).
    5. Guo, Yi & Han, Xuejiao & Zhou, Xinyang & Hug, Gabriela, 2023. "Incorporate day-ahead robustness and real-time incentives for electricity market design," Applied Energy, Elsevier, vol. 332(C).
    6. Ruoyang Li & Alva Svoboda & Shmuel Oren, 2015. "Efficiency impact of convergence bidding in the california electricity market," Journal of Regulatory Economics, Springer, vol. 48(3), pages 245-284, December.
    7. Najafi, Arsalan & Falaghi, Hamid & Contreras, Javier & Ramezani, Maryam, 2016. "Medium-term energy hub management subject to electricity price and wind uncertainty," Applied Energy, Elsevier, vol. 168(C), pages 418-433.
    8. Ochoa, Tomás & Gil, Esteban & Angulo, Alejandro & Valle, Carlos, 2022. "Multi-agent deep reinforcement learning for efficient multi-timescale bidding of a hybrid power plant in day-ahead and real-time markets," Applied Energy, Elsevier, vol. 317(C).
    9. Bertrand, Gilles & Papavasiliou, Anthony, 2020. "Adaptive Trading in Continuous Intraday Electricity Markets for a Storage Unit," LIDAM Reprints CORE 3104, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Wang, Jianzhou & Niu, Tong & Lu, Haiyan & Guo, Zhenhai & Yang, Wendong & Du, Pei, 2018. "An analysis-forecast system for uncertainty modeling of wind speed: A case study of large-scale wind farms," Applied Energy, Elsevier, vol. 211(C), pages 492-512.
    11. Rahimiyan, Morteza & Morales, Juan M. & Conejo, Antonio J., 2011. "Evaluating alternative offering strategies for wind producers in a pool," Applied Energy, Elsevier, vol. 88(12), pages 4918-4926.
    12. Esmaeili Aliabadi, Danial & Chan, Katrina, 2022. "The emerging threat of artificial intelligence on competition in liberalized electricity markets: A deep Q-network approach," Applied Energy, Elsevier, vol. 325(C).
    13. Demir, Sumeyra & Stappers, Bart & Kok, Koen & Paterakis, Nikolaos G., 2022. "Statistical arbitrage trading on the intraday market using the asynchronous advantage actor–critic method," Applied Energy, Elsevier, vol. 314(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demir, Sumeyra & Stappers, Bart & Kok, Koen & Paterakis, Nikolaos G., 2022. "Statistical arbitrage trading on the intraday market using the asynchronous advantage actor–critic method," Applied Energy, Elsevier, vol. 314(C).
    2. Gao, Hongchao & Jin, Tai & Feng, Cheng & Li, Chuyi & Chen, Qixin & Kang, Chongqing, 2024. "Review of virtual power plant operations: Resource coordination and multidimensional interaction," Applied Energy, Elsevier, vol. 357(C).
    3. Carrión, Miguel & Domínguez, Ruth & Oggioni, Giorgia, 2025. "Optimal participation of wind power producers in a hybrid intraday market: A multi-stage stochastic approach," Energy Economics, Elsevier, vol. 144(C).
    4. Hopkins, Caroline A., 2020. "Convergence bids and market manipulation in the California electricity market," Energy Economics, Elsevier, vol. 89(C).
    5. Guo, Nongchao & Lo Prete, Chiara, 2019. "Cross-product manipulation with intertemporal constraints: An equilibrium model," Energy Policy, Elsevier, vol. 134(C).
    6. Liu, Qian & Li, Wanjun & Zhao, Zhen & Jian, Gan, 2024. "Optimal operation of coordinated multi-carrier energy hubs for integrated electricity and gas networks," Energy, Elsevier, vol. 288(C).
    7. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    8. Benedikt Finnah, 2022. "Optimal bidding functions for renewable energies in sequential electricity markets," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 1-27, March.
    9. Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
    10. Beigvand, Soheil Derafshi & Abdi, Hamdi & La Scala, Massimo, 2017. "A general model for energy hub economic dispatch," Applied Energy, Elsevier, vol. 190(C), pages 1090-1111.
    11. Bostan, Alireza & Nazar, Mehrdad Setayesh & Shafie-khah, Miadreza & Catalão, João P.S., 2020. "Optimal scheduling of distribution systems considering multiple downward energy hubs and demand response programs," Energy, Elsevier, vol. 190(C).
    12. Dressler, Luisa, 2016. "Support schemes for renewable electricity in the European Union: Producer strategies and competition," Energy Economics, Elsevier, vol. 60(C), pages 186-196.
    13. Lu, Xinhui & Liu, Zhaoxi & Ma, Li & Wang, Lingfeng & Zhou, Kaile & Yang, Shanlin, 2020. "A robust optimization approach for coordinated operation of multiple energy hubs," Energy, Elsevier, vol. 197(C).
    14. Ma, Huan & Chen, Qun & Hu, Bo & Sun, Qinhan & Li, Tie & Wang, Shunjiang, 2021. "A compact model to coordinate flexibility and efficiency for decomposed scheduling of integrated energy system," Applied Energy, Elsevier, vol. 285(C).
    15. Hosseini, Seyyed Ahmad & Toubeau, Jean-François & De Grève, Zacharie & Vallée, François, 2020. "An advanced day-ahead bidding strategy for wind power producers considering confidence level on the real-time reserve provision," Applied Energy, Elsevier, vol. 280(C).
    16. Kaiss, Mateus & Wan, Yihao & Gebbran, Daniel & Vila, Clodomiro Unsihuay & Dragičević, Tomislav, 2025. "Review on Virtual Power Plants/Virtual Aggregators: Concepts, applications, prospects and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    17. Najafi, Arsalan & Jasiński, Michał & Leonowicz, Zbigniew, 2022. "A hybrid distributed framework for optimal coordination of electric vehicle aggregators problem," Energy, Elsevier, vol. 249(C).
    18. Katinas, Vladislovas & Gecevicius, Giedrius & Marciukaitis, Mantas, 2018. "An investigation of wind power density distribution at location with low and high wind speeds using statistical model," Applied Energy, Elsevier, vol. 218(C), pages 442-451.
    19. Koichiro Ito & Mar Reguant, 2016. "Sequential Markets, Market Power, and Arbitrage," American Economic Review, American Economic Association, vol. 106(7), pages 1921-1957, July.
    20. Peña, Juan Ignacio & Rodriguez, Rosa, 2016. "Time-zero efficiency of European power derivatives markets," Energy Policy, Elsevier, vol. 95(C), pages 253-268.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261924026497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.