IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v383y2025ics0306261924026497.html
   My bibliography  Save this article

Strategic bidding of wind farms in medium-to-long-term rolling transactions: A bi-level multi-agent deep reinforcement learning approach

Author

Listed:
  • Zheng, Yi
  • Wang, Jian
  • Wang, Chengmin
  • Huang, Chunyi
  • Yang, Jingfei
  • Xie, Ning

Abstract

The increasing penetration of renewable energy in the electricity market suppresses marginal prices, posing profitability challenges for wind power producers. To address this, effective medium-to-long-term (MLT) rolling transactions can hedge against spot market price risks and improve profitability. However, conventional bidding approaches often fail to capture the intricate uncertainties associated with wind generation and trading dynamics over extended periods. This paper introduces a bi-level multi-agent deep reinforcement learning (DRL) approach specifically designed for optimizing wind energy MLT rolling transactions. The proposed method innovatively integrates the Black–Scholes model with the Hamiltonian function to structure an optimal decision-making framework that balances short-term bidding efficiency with long-term strategic positioning. By separately optimizing transaction quantities and prices, the model prevents conflicts between these variables and ensures more accurate and effective decision-making. Additionally, the approach leverages advanced spatiotemporal modeling capabilities through the TimesNet-Latent-GNN framework, enabling it to capture complex market dependencies and achieve superior performance in managing price risks and maximizing profitability. Validation using real-world transaction data from the Shanxi electricity market demonstrates that the proposed method significantly outperforms traditional risk-averse strategies in terms of profitability and risk mitigation.

Suggested Citation

  • Zheng, Yi & Wang, Jian & Wang, Chengmin & Huang, Chunyi & Yang, Jingfei & Xie, Ning, 2025. "Strategic bidding of wind farms in medium-to-long-term rolling transactions: A bi-level multi-agent deep reinforcement learning approach," Applied Energy, Elsevier, vol. 383(C).
  • Handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261924026497
    DOI: 10.1016/j.apenergy.2024.125265
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924026497
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125265?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Severin Borenstein & James Bushnell & Christopher R. Knittel & Catherine Wolfram, 2008. "Inefficiencies And Market Power In Financial Arbitrage: A Study Of California'S Electricity Markets," Journal of Industrial Economics, Wiley Blackwell, vol. 56(2), pages 347-378, June.
    2. Sheikhahmadi, P. & Bahramara, S. & Moshtagh, J. & Yazdani Damavandi, M., 2018. "A risk-based approach for modeling the strategic behavior of a distribution company in wholesale energy market," Applied Energy, Elsevier, vol. 214(C), pages 24-38.
    3. Rahimiyan, Morteza & Morales, Juan M. & Conejo, Antonio J., 2011. "Evaluating alternative offering strategies for wind producers in a pool," Applied Energy, Elsevier, vol. 88(12), pages 4918-4926.
    4. Ruoyang Li & Alva Svoboda & Shmuel Oren, 2015. "Efficiency impact of convergence bidding in the california electricity market," Journal of Regulatory Economics, Springer, vol. 48(3), pages 245-284, December.
    5. Bertrand, Gilles & Papavasiliou, Anthony, 2020. "Adaptive Trading in Continuous Intraday Electricity Markets for a Storage Unit," LIDAM Reprints CORE 3104, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Najafi, Arsalan & Falaghi, Hamid & Contreras, Javier & Ramezani, Maryam, 2016. "Medium-term energy hub management subject to electricity price and wind uncertainty," Applied Energy, Elsevier, vol. 168(C), pages 418-433.
    7. Silva, Ana R. & Pousinho, H.M.I. & Estanqueiro, Ana, 2022. "A multistage stochastic approach for the optimal bidding of variable renewable energy in the day-ahead, intraday and balancing markets," Energy, Elsevier, vol. 258(C).
    8. Esmaeili Aliabadi, Danial & Chan, Katrina, 2022. "The emerging threat of artificial intelligence on competition in liberalized electricity markets: A deep Q-network approach," Applied Energy, Elsevier, vol. 325(C).
    9. Izanloo, Milad & Aslani, Alireza & Zahedi, Rahim, 2022. "Development of a Machine learning assessment method for renewable energy investment decision making," Applied Energy, Elsevier, vol. 327(C).
    10. Wang, Jianzhou & Niu, Tong & Lu, Haiyan & Guo, Zhenhai & Yang, Wendong & Du, Pei, 2018. "An analysis-forecast system for uncertainty modeling of wind speed: A case study of large-scale wind farms," Applied Energy, Elsevier, vol. 211(C), pages 492-512.
    11. Guo, Yi & Han, Xuejiao & Zhou, Xinyang & Hug, Gabriela, 2023. "Incorporate day-ahead robustness and real-time incentives for electricity market design," Applied Energy, Elsevier, vol. 332(C).
    12. Demir, Sumeyra & Stappers, Bart & Kok, Koen & Paterakis, Nikolaos G., 2022. "Statistical arbitrage trading on the intraday market using the asynchronous advantage actor–critic method," Applied Energy, Elsevier, vol. 314(C).
    13. Ochoa, Tomás & Gil, Esteban & Angulo, Alejandro & Valle, Carlos, 2022. "Multi-agent deep reinforcement learning for efficient multi-timescale bidding of a hybrid power plant in day-ahead and real-time markets," Applied Energy, Elsevier, vol. 317(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demir, Sumeyra & Stappers, Bart & Kok, Koen & Paterakis, Nikolaos G., 2022. "Statistical arbitrage trading on the intraday market using the asynchronous advantage actor–critic method," Applied Energy, Elsevier, vol. 314(C).
    2. Gao, Hongchao & Jin, Tai & Feng, Cheng & Li, Chuyi & Chen, Qixin & Kang, Chongqing, 2024. "Review of virtual power plant operations: Resource coordination and multidimensional interaction," Applied Energy, Elsevier, vol. 357(C).
    3. Hopkins, Caroline A., 2020. "Convergence bids and market manipulation in the California electricity market," Energy Economics, Elsevier, vol. 89(C).
    4. Carrión, Miguel & Domínguez, Ruth & Oggioni, Giorgia, 2025. "Optimal participation of wind power producers in a hybrid intraday market: A multi-stage stochastic approach," Energy Economics, Elsevier, vol. 144(C).
    5. Guo, Nongchao & Lo Prete, Chiara, 2019. "Cross-product manipulation with intertemporal constraints: An equilibrium model," Energy Policy, Elsevier, vol. 134(C).
    6. Pandžić, Hrvoje & Kuzle, Igor & Capuder, Tomislav, 2013. "Virtual power plant mid-term dispatch optimization," Applied Energy, Elsevier, vol. 101(C), pages 134-141.
    7. Chi, Lixun & Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Bai, Hua, 2020. "Integrated Deterministic and Probabilistic Safety Analysis of Integrated Energy Systems with bi-directional conversion," Energy, Elsevier, vol. 212(C).
    8. Pietz, Matthäus, 2009. "Risk premia in electricity wholesale spot markets: empirical evidence from Germany," CEFS Working Paper Series 2009-11, Technische Universität München (TUM), Center for Entrepreneurial and Financial Studies (CEFS).
    9. Liu, Qian & Li, Wanjun & Zhao, Zhen & Jian, Gan, 2024. "Optimal operation of coordinated multi-carrier energy hubs for integrated electricity and gas networks," Energy, Elsevier, vol. 288(C).
    10. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    11. Benedikt Finnah, 2022. "Optimal bidding functions for renewable energies in sequential electricity markets," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 1-27, March.
    12. Chen, Houhe & Wang, Di & Zhang, Rufeng & Jiang, Tao & Li, Xue, 2022. "Optimal participation of ADN in energy and reserve markets considering TSO-DSO interface and DERs uncertainties," Applied Energy, Elsevier, vol. 308(C).
    13. Yıldıran, Uğur & Kayahan, İsmail, 2018. "Risk-averse stochastic model predictive control-based real-time operation method for a wind energy generation system supported by a pumped hydro storage unit," Applied Energy, Elsevier, vol. 226(C), pages 631-643.
    14. Lazarczyk, Ewa, 2013. "Market Specific News and Its Impact on Electricity Prices – Forward Premia," Working Paper Series 953, Research Institute of Industrial Economics, revised 20 Aug 2013.
    15. Hassan Ranjbarzadeh & Seyed Masoud Moghaddas Tafreshi & Mohd Hasan Ali & Abbas Z. Kouzani & Suiyang Khoo, 2022. "A Probabilistic Model for Minimization of Solar Energy Operation Costs as Well as CO 2 Emissions in a Multi-Carrier Microgrid (MCMG)," Energies, MDPI, vol. 15(9), pages 1-24, April.
    16. Pandžić, Hrvoje & Morales, Juan M. & Conejo, Antonio J. & Kuzle, Igor, 2013. "Offering model for a virtual power plant based on stochastic programming," Applied Energy, Elsevier, vol. 105(C), pages 282-292.
    17. Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
    18. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    19. Westgaard, Sjur & Fleten, Stein-Erik & Negash, Ahlmahz & Botterud, Audun & Bogaard, Katinka & Verling, Trude Haugsvaer, 2021. "Performing price scenario analysis and stress testing using quantile regression: A case study of the Californian electricity market," Energy, Elsevier, vol. 214(C).
    20. Beigvand, Soheil Derafshi & Abdi, Hamdi & La Scala, Massimo, 2017. "A general model for energy hub economic dispatch," Applied Energy, Elsevier, vol. 190(C), pages 1090-1111.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:383:y:2025:i:c:s0306261924026497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.