IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v381y2025ics0306261924024395.html
   My bibliography  Save this article

Trusted low-carbon optimized economic dispatch for integrated energy industrial park based on blockchain technology

Author

Listed:
  • Zhu, Jizhong
  • Zhou, Jialin
  • Zhang, Di
  • Gan, Wei
  • Sun, Chao

Abstract

This paper focuses on the low-carbon trustworthy economic dispatch strategy of integrated energy industrial parks that merge integrated energy systems with high-carbon production enterprises. A ladder-type carbon trading mechanism is proposed with a particular emphasis on environmental protection and carbon reduction, which incorporates the carbon trading cost into the total dispatching cost and could incentivize the industrial park to operate in a low-carbon manner. A trustworthy data attestation and traceability framework based on blockchain technology is developed to ensure the trustworthiness of device and enterprise production, operation, and transaction data within the park, and to provide data query and traceability functions. Furthermore, the on-chain and off-chain storage mechanisms and the internal and external dual-chain collaboration mechanisms are conducted to alleviate data management and storage pressures, isolate sensitive data, and satisfy differentiated data management needs. The simulation result demonstrates that applying the ladder-type carbon trading mechanism can effectively reduce the carbon emissions of industrial parks, and the proposed framework can be beneficial to accurate load forecasting and practical dispatch strategies.

Suggested Citation

  • Zhu, Jizhong & Zhou, Jialin & Zhang, Di & Gan, Wei & Sun, Chao, 2025. "Trusted low-carbon optimized economic dispatch for integrated energy industrial park based on blockchain technology," Applied Energy, Elsevier, vol. 381(C).
  • Handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924024395
    DOI: 10.1016/j.apenergy.2024.125055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924024395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Esmat, Ayman & de Vos, Martijn & Ghiassi-Farrokhfal, Yashar & Palensky, Peter & Epema, Dick, 2021. "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology," Applied Energy, Elsevier, vol. 282(PA).
    2. Gu, Haifei & Li, Yang & Yu, Jie & Wu, Chen & Song, Tianli & Xu, Jinzhou, 2020. "Bi-level optimal low-carbon economic dispatch for an industrial park with consideration of multi-energy price incentives," Applied Energy, Elsevier, vol. 262(C).
    3. Li, Jinghua & Fang, Jiakun & Zeng, Qing & Chen, Zhe, 2016. "Optimal operation of the integrated electrical and heating systems to accommodate the intermittent renewable sources," Applied Energy, Elsevier, vol. 167(C), pages 244-254.
    4. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Sun, Chao & Liu, Yun & Li, Yuanzheng & Lin, Shunjiang & Gooi, Hoay Beng & Zhu, Jizhong, 2023. "Network-aware P2P multi-energy trading in decentralized electric-heat systems," Applied Energy, Elsevier, vol. 345(C).
    6. Guo, Jiacheng & Wu, Di & Wang, Yuanyuan & Wang, Liming & Guo, Hanyuan, 2023. "Co-optimization method research and comprehensive benefits analysis of regional integrated energy system," Applied Energy, Elsevier, vol. 340(C).
    7. Wang, Rutian & Wen, Xiangyun & Wang, Xiuyun & Fu, Yanbo & Zhang, Yu, 2022. "Low carbon optimal operation of integrated energy system based on carbon capture technology, LCA carbon emissions and ladder-type carbon trading," Applied Energy, Elsevier, vol. 311(C).
    8. Shi, Zhengkun & Yang, Yongbiao & Xu, Qingshan & Wu, Chenyu & Hua, Kui, 2023. "A low-carbon economic dispatch for integrated energy systems with CCUS considering multi-time-scale allocation of carbon allowance," Applied Energy, Elsevier, vol. 351(C).
    9. Yan, Mingyu & Teng, Fei & Gan, Wei & Yao, Wei & Wen, Jinyu, 2023. "Blockchain for secure decentralized energy management of multi-energy system using state machine replication," Applied Energy, Elsevier, vol. 337(C).
    10. Yan, Mingyu & Gan, Wei & Zhou, Yue & Wen, Jianfeng & Yao, Wei, 2022. "Projection method for blockchain-enabled non-iterative decentralized management in integrated natural gas-electric systems and its application in digital twin modelling," Applied Energy, Elsevier, vol. 311(C).
    11. Wei Xu & Wei Han & Huaizhang Jin & Yong Bai & Huan Liu, 2023. "Research on optimal scheduling of integrated energy system in low-carbon parks based on demand response," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 433-442.
    12. Wang, Haibing & Zhao, Anjie & Khan, Muhammad Qasim & Sun, Weiqing, 2024. "Optimal operation of energy hub considering reward-punishment ladder carbon trading and electrothermal demand coupling," Energy, Elsevier, vol. 286(C).
    13. He, Liangce & Lu, Zhigang & Zhang, Jiangfeng & Geng, Lijun & Zhao, Hao & Li, Xueping, 2018. "Low-carbon economic dispatch for electricity and natural gas systems considering carbon capture systems and power-to-gas," Applied Energy, Elsevier, vol. 224(C), pages 357-370.
    14. Sun, Jingqi & Ruze, Nuermaimaiti & Zhang, Jianjun & Shi, Jing & Shen, Boyang, 2021. "Capacity planning and optimization for integrated energy system in industrial park considering environmental externalities," Renewable Energy, Elsevier, vol. 167(C), pages 56-65.
    15. Zhang, Wei & Li, Jing & Li, Guoxiang & Guo, Shucen, 2020. "Emission reduction effect and carbon market efficiency of carbon emissions trading policy in China," Energy, Elsevier, vol. 196(C).
    16. Xiang, Yue & Wu, Gang & Shen, Xiaodong & Ma, Yuhang & Gou, Jing & Xu, Weiting & Liu, Junyong, 2021. "Low-carbon economic dispatch of electricity-gas systems," Energy, Elsevier, vol. 226(C).
    17. Xiuli Wang & Fang Yao & Fushuan Wen, 2022. "Applications of Blockchain Technology in Modern Power Systems: A Brief Survey," Energies, MDPI, vol. 15(13), pages 1-22, June.
    18. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Zhengkun & Yang, Yongbiao & Xu, Qingshan & Wu, Chenyu & Hua, Kui, 2023. "A low-carbon economic dispatch for integrated energy systems with CCUS considering multi-time-scale allocation of carbon allowance," Applied Energy, Elsevier, vol. 351(C).
    2. Liang, Ziwen & Mu, Longhua, 2024. "Multi-agent low-carbon optimal dispatch of regional integrated energy system based on mixed game theory," Energy, Elsevier, vol. 295(C).
    3. Wu, Qunli & Li, Chunxiang, 2023. "Modeling and operation optimization of hydrogen-based integrated energy system with refined power-to-gas and carbon-capture-storage technologies under carbon trading," Energy, Elsevier, vol. 270(C).
    4. Tariq, Abdul Haseeb & Amin, Uzma, 2025. "Peer-to-peer multi-energy trading in a decentralized network: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    5. Xiang, Yue & Guo, Yongtao & Wu, Gang & Liu, Junyong & Sun, Wei & Lei, Yutian & Zeng, Pingliang, 2022. "Low-carbon economic planning of integrated electricity-gas energy systems," Energy, Elsevier, vol. 249(C).
    6. Huang, Yujing & Wang, Yudong & Liu, Nian, 2022. "Low-carbon economic dispatch and energy sharing method of multiple Integrated Energy Systems from the perspective of System of Systems," Energy, Elsevier, vol. 244(PA).
    7. Liang, Chao & Goodell, John W. & Li, Xiafei, 2024. "Impacts of carbon market and climate policy uncertainties on financial and economic stability: Evidence from connectedness network analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 92(C).
    8. Wang, Haibing & Zhao, Anjie & Khan, Muhammad Qasim & Sun, Weiqing, 2024. "Optimal operation of energy hub considering reward-punishment ladder carbon trading and electrothermal demand coupling," Energy, Elsevier, vol. 286(C).
    9. Xu, Jiazhu & Yi, Yuqin, 2023. "Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach," Energy, Elsevier, vol. 263(PB).
    10. Yao, Wenliang & Wang, Chengfu & Yang, Ming & Wang, Kang & Dong, Xiaoming & Zhang, Zhenwei, 2023. "A tri-layer decision-making framework for IES considering the interaction of integrated demand response and multi-energy market clearing," Applied Energy, Elsevier, vol. 342(C).
    11. Wu, Yanjuan & Wang, Caiwei & Wang, Yunliang, 2024. "Cooperative game optimization scheduling of multi-region integrated energy system based on ADMM algorithm," Energy, Elsevier, vol. 302(C).
    12. Ankang Miao & Yue Yuan & Yi Huang & Han Wu & Chao Feng, 2023. "Stochastic Optimization Model of Capacity Configuration for Integrated Energy Production System Considering Source-Load Uncertainty," Sustainability, MDPI, vol. 15(19), pages 1-22, September.
    13. Yun, Yunyun & Zhang, Dahai & Yang, Shengchun & Li, Yaping & Yan, Jiahao, 2023. "Low-carbon optimal dispatch of integrated energy system considering the operation of oxy-fuel combustion coupled with power-to-gas and hydrogen-doped gas equipment," Energy, Elsevier, vol. 283(C).
    14. Na Yu & Jianghua Chen & Lei Cheng, 2022. "Evolutionary Game Analysis of Carbon Emission Reduction between Government and Enterprises under Carbon Quota Trading Policy," IJERPH, MDPI, vol. 19(14), pages 1-22, July.
    15. Dong, Lei & Sun, Shiting & Zhang, Shiming & Zhang, Tao & Pu, Tianjiao, 2024. "Distributed restoration for integrated electricity-gas-heating energy systems with an iterative loop scheme," Energy, Elsevier, vol. 304(C).
    16. Mehrjerdi, Hasan & Mahdavi, Sajad & Hemmati, Reza, 2021. "Resilience maximization through mobile battery storage and diesel DG in integrated electrical and heating networks," Energy, Elsevier, vol. 237(C).
    17. Yang, Meng & Liu, Yisheng, 2023. "Research on multi-energy collaborative operation optimization of integrated energy system considering carbon trading and demand response," Energy, Elsevier, vol. 283(C).
    18. Wang, Rutian & Wen, Xiangyun & Wang, Xiuyun & Fu, Yanbo & Zhang, Yu, 2022. "Low carbon optimal operation of integrated energy system based on carbon capture technology, LCA carbon emissions and ladder-type carbon trading," Applied Energy, Elsevier, vol. 311(C).
    19. Qinghan Sun & Huan Ma & Tian Zhao & Yonglin Xin & Qun Chen, 2024. "Break down the decentralization-security-privacy trilemma in management of distributed energy systems," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Xu, Jing & Wang, Xiaoying & Gu, Yujiong & Ma, Suxia, 2023. "A data-based day-ahead scheduling optimization approach for regional integrated energy systems with varying operating conditions," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:381:y:2025:i:c:s0306261924024395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.