IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v379y2025ics0306261924022864.html
   My bibliography  Save this article

Typhoon related cascading fault chain dynamic evolution model and risk mitigation in distribution systems

Author

Listed:
  • Du, Ying
  • Zhang, Junxiang
  • Chen, Yuntian
  • Zhang, Haoran
  • Ji, Haoran
  • Wang, Chengshan
  • Yan, Jinyue

Abstract

The resilience of distribution system is severely influenced by typhoon disasters and the secondary disasters such as floods and debris flows. The cascading propagation of typhoon disasters, coupled with the cascading propagation of faults in distribution systems, creates a dual-coupling dynamic that results in large-scale faults. The key to mitigating losses from typhoon-related cascading faults lies in understanding the potential paths of cascading propagation and taking corresponding measures to preemptively interrupt the chain propagation. In this paper, based on the analysis of actual typhoon related fault data of Guangzhou, China, we created the knowledge graph of the typhoon related cascading fault chains and modeled the chain formation mechanism, successfully integrating the distribution systems and the typhoon disaster propagation systems. We also achieved the dynamic evolution of typhoon related cascading fault chains by using system dynamics. In the case studies of Guangzhou, we selected three typical typhoon related fault scenarios, and then the proposed model is utilized to capture the fault cascading pathway, which can help mitigate typhoon related fault risks in distribution systems.

Suggested Citation

  • Du, Ying & Zhang, Junxiang & Chen, Yuntian & Zhang, Haoran & Ji, Haoran & Wang, Chengshan & Yan, Jinyue, 2025. "Typhoon related cascading fault chain dynamic evolution model and risk mitigation in distribution systems," Applied Energy, Elsevier, vol. 379(C).
  • Handle: RePEc:eee:appene:v:379:y:2025:i:c:s0306261924022864
    DOI: 10.1016/j.apenergy.2024.124903
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924022864
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124903?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Amir AghaKouchak & Laurie S. Huning & Felicia Chiang & Mojtaba Sadegh & Farshid Vahedifard & Omid Mazdiyasni & Hamed Moftakhari & Iman Mallakpour, 2018. "How do natural hazards cascade to cause disasters?," Nature, Nature, vol. 561(7724), pages 458-460, September.
    2. Ahmad, Salman & Mat Tahar, Razman & Muhammad-Sukki, Firdaus & Munir, Abu Bakar & Abdul Rahim, Ruzairi, 2016. "Application of system dynamics approach in electricity sector modelling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 29-37.
    3. Oh, Seongmun & Jufri, Fauzan Hanif & Choi, Min-Hee & Jung, Jaesung, 2022. "A study of tropical cyclone impact on the power distribution grid in South Korea for estimating damage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Rong An & Xuehai Huang, 2012. "Constrained Finite Element Methods for Biharmonic Problem," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-19, December.
    5. Gjorgiev, Blazhe & Sansavini, Giovanni, 2022. "Identifying and assessing power system vulnerabilities to transmission asset outages via cascading failure analysis," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Rong An & Xuehai Huang, 2012. "Constrained C0 Finite Element Methods for Biharmonic Problem," Abstract and Applied Analysis, John Wiley & Sons, vol. 2012(1).
    7. Lifen Xu & Xiangwei Meng & Xuegong Xu, 2014. "Natural hazard chain research in China: A review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1631-1659, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arnaud Mignan & Ziqi Wang, 2020. "Exploring the Space of Possibilities in Cascading Disasters with Catastrophe Dynamics," IJERPH, MDPI, vol. 17(19), pages 1-21, October.
    2. Dehghan, Hamed & Amin-Naseri, Mohammad Reza & Nahavandi, Nasim, 2021. "A system dynamics model to analyze future electricity supply and demand in Iran under alternative pricing policies," Utilities Policy, Elsevier, vol. 69(C).
    3. Yingxin Chen & Jing Zhang & Pandu R. Tadikamalla & Lei Zhou, 2019. "The Mechanism of Social Organization Participation in Natural Hazards Emergency Relief: A Case Study Based on the Social Network Analysis," IJERPH, MDPI, vol. 16(21), pages 1-20, October.
    4. Dikshit, Saransh & Dobson, Ian & Alipour, Alice, 2024. "Cascading structural failures of towers in an electric power transmission line due to straight line winds," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    5. Zhang, Xi & Wang, Qin & Bi, Xiaowen & Li, Donghong & Liu, Dong & Yu, Yuanjin & Tse, Chi Kong, 2024. "Mitigating cascading failure in power grids with deep reinforcement learning-based remedial actions," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    6. Randell, Heather & Jiang, Chengsheng & Liang, Xin-Zhong & Murtugudde, Raghu & Sapkota, Amir, 2021. "Food insecurity and compound environmental shocks in Nepal: Implications for a changing climate," World Development, Elsevier, vol. 145(C).
    7. Lebeau, Alexis & Petitet, Marie & Quemin, Simon & Saguan, Marcelo, 2024. "Long-term issues with the Energy-Only Market design in the context of deep decarbonization," Energy Economics, Elsevier, vol. 132(C).
    8. Katherine Emma Lonergan & Salvatore Francesco Greco & Giovanni Sansavini, 2023. "Ensuring/insuring resilient energy system infrastructure," Environment Systems and Decisions, Springer, vol. 43(4), pages 625-638, December.
    9. Peng Ye, 2022. "Remote Sensing Approaches for Meteorological Disaster Monitoring: Recent Achievements and New Challenges," IJERPH, MDPI, vol. 19(6), pages 1-28, March.
    10. Stover, Oliver & Karve, Pranav & Mahadevan, Sankaran, 2023. "Reliability and risk metrics to assess operational adequacy and flexibility of power grids," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    11. Li, Qing & Li, Mingchu & Gong, Zhongqiang & Tian, Yuan & Zhang, Runfa, 2022. "Locating and protecting interdependent facilities to hedge against multiple non-cooperative limited choice attackers," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    12. Xinliang Xu & Daowei Sun & Tengjiao Guo, 2015. "A systemic analysis of typhoon risk across China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 461-477, May.
    13. Liu, Xiangyu & Xiong, Guojiang & Mirjalili, Seyedali, 2024. "Accurate fault section diagnosis of power systems with a binary adaptive quadratic interpolation learning differential evolution," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    14. Herrera, Milton M. & Dyner, Isaac & Cosenz, Federico, 2019. "Assessing the effect of transmission constraints on wind power expansion in northeast Brazil," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    15. Hsiao, Chih-Tung & Liu, Chung-Shu & Chang, Dong-Shang & Chen, Chun-Cheng, 2018. "Dynamic modeling of the policy effect and development of electric power systems: A case in Taiwan," Energy Policy, Elsevier, vol. 122(C), pages 377-387.
    16. Sanjib Sharma & Rocky Talchabhadel & Santosh Nepal & Ganesh R. Ghimire & Biplob Rakhal & Jeeban Panthi & Basanta R. Adhikari & Soni M. Pradhanang & Shreedhar Maskey & Saurav Kumar, 2023. "Increasing risk of cascading hazards in the central Himalayas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(2), pages 1117-1126, November.
    17. Feng, Jian Rui & Zhao, Meng-ke & Lu, Shou-xiang, 2024. "Accident spread and risk propagation mechanism in complex industrial system network," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    18. Zhao, Xian & Han, He & Jiao, Chunhui & Qiu, Qingan, 2024. "Reliability modeling of k-out-of-n: F balanced systems with common bus performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    19. Lu, Qing-Chang & Zhang, Lei & Xu, Peng-Cheng & Cui, Xin & Li, Jing, 2022. "Modeling network vulnerability of urban rail transit under cascading failures: A Coupled Map Lattices approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    20. Yanlin Li & Aijun Yao & Yifei Gong, 2022. "Deformation and Failure Mechanism of a Massive Ancient Anti-Dip River-Damming Landslide in the Upper Jinsha River," Sustainability, MDPI, vol. 14(20), pages 1-18, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:379:y:2025:i:c:s0306261924022864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.