IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipas0306261924015137.html
   My bibliography  Save this article

Developing hydrogen energy hubs: The role of H2 prices, wind power and infrastructure investments in Northern Norway

Author

Listed:
  • Svendsmark, Erik
  • Straus, Julian
  • Crespo del Granado, Pedro

Abstract

Hydrogen is seen as a key energy carrier to reduce CO2 emissions. Two main production options for hydrogen with low CO2 intensity are water electrolysis and natural gas reforming with Carbon Capture and Storage, known as green and blue hydrogen. Northern Norway has a surplus of renewable energy and natural gas availability from the Barents Sea, which can be used to produce hydrogen. However, exports are challenging due to the large distances to markets and lack of energy infrastructure. This study explores the profitability of hydrogen exports from this Arctic region. It considers necessary investments in hydrogen technology and capacity expansions of wind farms and the power grid. Various scenarios are investigated with different assumptions for investment decisions. The critical question is how exogenous factors shape future regional hydrogen production and export. The results show that production for global export may be profitable above 90 €/MWh, excluding costs for storage and transport, with blue hydrogen being cheaper than green. Depending on the assumptions, a combination of liquid hydrogen and ammonia export might be optimal for seaborne transport. Exports to Sweden can be profitable at prices above 60 €/MWh, transported by pipelines. Expanding power generation capacity can be crucial, and electricity and hydrogen exports are unlikely to co-exist.

Suggested Citation

  • Svendsmark, Erik & Straus, Julian & Crespo del Granado, Pedro, 2024. "Developing hydrogen energy hubs: The role of H2 prices, wind power and infrastructure investments in Northern Norway," Applied Energy, Elsevier, vol. 376(PA).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924015137
    DOI: 10.1016/j.apenergy.2024.124130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924015137
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Reuß, Markus & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2019. "A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany," Applied Energy, Elsevier, vol. 247(C), pages 438-453.
    2. Michal Kaut, 2024. "Handling of long-term storage in multi-horizon stochastic programs," Computational Management Science, Springer, vol. 21(1), pages 1-26, June.
    3. repec:cdl:itsdav:qt1804p4vw is not listed on IDEAS
    4. Fodstad, Marte & Crespo del Granado, Pedro & Hellemo, Lars & Knudsen, Brage Rugstad & Pisciella, Paolo & Silvast, Antti & Bordin, Chiara & Schmidt, Sarah & Straus, Julian, 2022. "Next frontiers in energy system modelling: A review on challenges and the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    5. Durakovic, Goran & del Granado, Pedro Crespo & Tomasgard, Asgeir, 2023. "Powering Europe with North Sea offshore wind: The impact of hydrogen investments on grid infrastructure and power prices," Energy, Elsevier, vol. 263(PA).
    6. Iain Staffell & Stefan Pfenninger & Nathan Johnson, 2023. "A global model of hourly space heating and cooling demand at multiple spatial scales," Nature Energy, Nature, vol. 8(12), pages 1328-1344, December.
    7. repec:cdl:itsdav:qt7p3500g2 is not listed on IDEAS
    8. Durakovic, Goran & del Granado, Pedro Crespo & Tomasgard, Asgeir, 2023. "Are green and blue hydrogen competitive or complementary? Insights from a decarbonized European power system analysis," Energy, Elsevier, vol. 282(C).
    9. George, Jan Frederick & Müller, Viktor Paul & Winkler, Jenny & Ragwitz, Mario, 2022. "Is blue hydrogen a bridging technology? - The limits of a CO2 price and the role of state-induced price components for green hydrogen production in Germany," Energy Policy, Elsevier, vol. 167(C).
    10. Bødal, Espen Flo & Holm, Sigmund Eggen & Subramanian, Avinash & Durakovic, Goran & Pinel, Dimitri & Hellemo, Lars & Ortiz, Miguel Muñoz & Knudsen, Brage Rugstad & Straus, Julian, 2024. "Hydrogen for harvesting the potential of offshore wind: A North Sea case study," Applied Energy, Elsevier, vol. 357(C).
    11. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    12. Behrang Shirizadeh & Manuel Villavicencio & Sebastien Douguet & Johannes Trüby & Charbel Bou Issa & Gondia Sokhna Seck & Vincent D’herbemont & Emmanuel Hache & Louis-Marie Malbec & Jerome Sabathier & , 2023. "The impact of methane leakage on the role of natural gas in the European energy transition," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Superchi, Francesco & Moustakis, Antonis & Pechlivanoglou, George & Bianchini, Alessandro, 2025. "On the importance of degradation modeling for the robust design of hybrid energy systems including renewables and storage," Applied Energy, Elsevier, vol. 377(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Durakovic, Goran & del Granado, Pedro Crespo & Tomasgard, Asgeir, 2023. "Are green and blue hydrogen competitive or complementary? Insights from a decarbonized European power system analysis," Energy, Elsevier, vol. 282(C).
    2. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    3. Onodera, Hiroaki & Delage, Rémi & Nakata, Toshihiko, 2024. "The role of regional renewable energy integration in electricity decarbonization—A case study of Japan," Applied Energy, Elsevier, vol. 363(C).
    4. Martin, Jonas & Neumann, Anne & Ødegård, Anders, 2023. "Renewable hydrogen and synthetic fuels versus fossil fuels for trucking, shipping and aviation: A holistic cost model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    5. Wang, Yifei & Dong, Guangzhong & Yu, Jincheng & Qin, Caiyan & Feng, Yu & Deng, Yanfei & Zhang, Mingming, 2025. "In-situ green hydrogen production from offshore wind farms, a prospective review," Renewable Energy, Elsevier, vol. 239(C).
    6. Lüth, Alexandra & Werner, Yannick & Egging-Bratseth, Ruud & Kazempour, Jalal, 2024. "Electrolysis as a flexibility resource on energy islands: The case of the North Sea," Energy Policy, Elsevier, vol. 185(C).
    7. Kirchem, Dana & Schill, Wolf-Peter, 2023. "Power sector effects of green hydrogen production in Germany," Energy Policy, Elsevier, vol. 182(C).
    8. Goran Durakovic & Hongyu Zhang & Brage Rugstad Knudsen & Asgeir Tomasgard & Pedro Crespo del Granado, 2023. "Decarbonizing the European energy system in the absence of Russian gas: Hydrogen uptake and carbon capture developments in the power, heat and industry sectors," Papers 2308.08953, arXiv.org.
    9. Nagel, Niels Oliver & Jåstad, Eirik Ogner, 2025. "Blue and green hydrogen–An analysis of competing pathways and their impact on the European energy system," Energy, Elsevier, vol. 323(C).
    10. Köppchen, Bennet & Stadler, Ingo & Nebel, Arjuna, 2025. "Effects of non-industrial decentralized demand-side-management on energy costs and battery storage requirement in Germany's power grid," Energy, Elsevier, vol. 323(C).
    11. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Ahang, Mohammadreza & Granado, Pedro Crespo del & Tomasgard, Asgeir, 2025. "Investments in green hydrogen as a flexibility source for the European power system by 2050: Does it pay off?," Applied Energy, Elsevier, vol. 378(PA).
    13. Förster, Robert & Eiser, Niklas & Kaiser, Matthias & Buhl, Hans Ulrich, 2025. "Leveraging synergies for energy-flexible operated electrolysis: A techno-economic analysis of power purchase agreement procurement with battery energy storage systems for renewable hydrogen production," Applied Energy, Elsevier, vol. 393(C).
    14. Hjelmeland, Martin & Nøland, Jonas Kristiansen & Backe, Stian & Korpås, Magnus, 2025. "The role of nuclear energy and baseload demand in capacity expansion planning for low-carbon power systems," Applied Energy, Elsevier, vol. 377(PA).
    15. Mendes, Carla & Staffell, Iain & Green, Richard, 2024. "EuroMod: Modelling European power markets with improved price granularity," Energy Economics, Elsevier, vol. 131(C).
    16. Marko Hočevar & Lovrenc Novak & Primož Drešar & Gašper Rak, 2022. "The Status Quo and Future of Hydropower in Slovenia," Energies, MDPI, vol. 15(19), pages 1-13, September.
    17. Li, Yanfei & Taghizadeh-Hesary, Farhad, 2022. "The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China," Energy Policy, Elsevier, vol. 160(C).
    18. Zhuang, Rui & Wang, Xiaonan & Guo, Miao & Zhao, Yingru & El-Farra, Nael H. & Palazoglu, Ahmet, 2020. "Waste-to-hydrogen: Recycling HCl to produce H2 and Cl2," Applied Energy, Elsevier, vol. 259(C).
    19. Sehyeon Kim & Markus Holz & Soojin Park & Yongbeum Yoon & Eunchel Cho & Junsin Yi, 2021. "Future Options for Lightweight Photovoltaic Modules in Electrical Passenger Cars," Sustainability, MDPI, vol. 13(5), pages 1-7, February.
    20. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924015137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.