IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v365y2024ics0306261924006172.html
   My bibliography  Save this article

Performance uniformity analysis in polymer electrolyte fuel cell using long-term dynamic simulation

Author

Listed:
  • Culubret, S.
  • Rubio, M.A.
  • Sanchez, D.G.
  • Urquia, A.

Abstract

The temporal stability and spatial homogeneity of current density are key factors in Polymer Electrolyte Fuel Cell (PEFC) performance and durability. Temporal and spatial variations of relative humidity, fuel concentration, and water droplets in the channels are the principal causes of non-homogeneous current density. A dynamic pseudo-3D model was previously proposed by the authors and has been extended and improved to perform the long-term and intensive simulations of PEFC with low computational cost, which allows to study of the performances homogeneity with different experimental configurations and flow field topologies. The model considers important phenomena in the homogeneity analysis, such as gases and liquid water movement in diffusion layers and flow field, electrochemical reactions, and others. Model validation has been performed using experimental data obtained from a 25 cm2 cell with a single serpentine, which has allowed studying the model transient response and spatial representation. The simulations have been used to study the homogeneity and stability of 36 setups of PEFC, varying the rib/channel width ratio, the stoichiometric ratio, and the number of parallel serpentine channels. The results show the importance of a properly flow field design to control gas flow, remove the channels’ liquid water, and keep a homogeneous feeding. The study evaluated a set of channel configurations that show the improved temporal voltage stability and current density spatial homogeneity. The results show the impact of channel gas speed and ratio channel/rib width in liquid droplets removal and the proper fuel spatial distribution; and how configurations with a lesser number of channels in serpentine design require a lower stoichiometric ratio to perform better temporal and spatial uniformity. In the case of the cell configurations simulated, the optimum design was achieved using between 5 and 7 parallel serpentine channels and a channel/rib ratio 3/5.

Suggested Citation

  • Culubret, S. & Rubio, M.A. & Sanchez, D.G. & Urquia, A., 2024. "Performance uniformity analysis in polymer electrolyte fuel cell using long-term dynamic simulation," Applied Energy, Elsevier, vol. 365(C).
  • Handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006172
    DOI: 10.1016/j.apenergy.2024.123234
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924006172
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123234?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.